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Abstract: This paper proposes an architecture and algorithm of brain motor control
based on the internal model control (IMC) incorporating the acquisition of skill
explicitly. The meaning of skill is extended from acquisition of internal model, which
is a widespread view in computational neuroscience, to acquisition of internal model
and prefilter with appropriate bandwidth. This extension is essential in view of the
fact that no inverse model exists for usual plants.
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1. INTRODUCTION

In brain motor control, how human being can get
skills has been a long standing issue. Recently,
some computational neuroscientists brought for-
ward the idea that the skill is defined to be an
acquisition of internal models of the limbs and
the environment (e.g., Kawato & Gomi, 1992).
They used the so-called feedback error learning
method to construct an inverse model. Actually,
the inverse model may not exist for usual dynam-
ical systems. A usual technique to circumvent the
difficulty is to insert a lowpass prefilter that makes
the inverse model realizable. However, there still
remains the problem of how to choose the band-
width of the filter. If the bandwidth is too narrow,
it leads to degradation of the performance, and
if the bandwidth is too broad while the inverse
model is not accurate, it may lead to instability.
Therefore, the choice of the bandwidth is really
a matter of skill. The skillful control must choose
the bandwidth of the prefilter concordantly with
the accuracy of inverse model.

In this paper, an architecture of learning con-
troller which incorporates the skill acquisition in

the above sense is explored. Our approach can
be regarded as an adaptive version of windsurfer
approach (Anderson & Kosut 1991). In Section
2, proposed adaptive brain motor control archi-
tecture is stated. In Section 3, concrete adaptive
control algorithm is given. In Section 4, simulation
result is shown and Section 5 gives concluding
remarks.

2. BASIC ARCHITECTURE
2.1 Internal Model Control
The basic architecture is shown in Fig. 1. This

scheme is called Internal Model Control (Morari
& Zafiriou, 1989). Here P denotes a model of the

IMC
controller Plant

Fig. 1. Architecture of IMC



plant P. L is a prefilter such that controller P~1L
is a realizable dynamical system. L(s) such as

wd*

I = ¢ (1)

s+ w)d*
is taken in the same way as Morari & Zafiriou
(1989), where dx is a positive constant enough to
make P~1L proper. w is the only parameter of
filter. Roughly speaking, system is robustly stable
and bandwidth is narrow when w is small and vice
versa (Morari & Zafiriou, 1989).

In Miall et al. (1993), Smith Predictor which is
a special case of IMC was employed to explain
motor control in the cerebellum. There, interpre-
tation of IMC from the brain motor control point
of view was conjectured as follows. Plant corre-
sponds to musculoskeletal system or controlled
object. Desired motion r is issued in posterior
parietal cortex, passes the IMC controller con-
structed in the cerebellum and goes to motor
cortex by way of ventrolateral thalamic nucleus.
In motor cortex, input to musculoskeletal system
is produced. Model is acquired in the cerebellum.
It produces estimated state of the plant g. This
signal is compared with real output y from pe-
ripheral proprioceptors.

2.2 Adaptive IMC with skill enhancer

In the above scheme, when model is known or only
approximately known, controller acts as a feed-
back controller. On the other hand, when model
is perfect, it works as a feedforward controller.
In human skill acquisition process, IMC controller
works as feedback at early period of learning and
gradually shifts to feedforward as learning pro-
gresses. Synaptic plasticity called “Long Term De-
pression” is conjectured to be a basic substratum
of adaptation in the cerebellum (e.g., Kawato &
Gomi, 1992).

Refinement of model can be done by minimizing
the error between real output y and estimated
output g. Then, IMC controller is constructed by
copying parameters of model. But learning of the
model only is not enough. Adaptation of the ad-
justable parameter of prefilter is also important to
realize excellent skill enhancement. Skill enhance-
ment is a process of gradually improving control
performances. To do so, adaptation of prefilter
parameter to decrease control error between y and

d*
L.(s)r is required where L.(s) 7= and w.

wx

ST Wk
is desired bandwidth. Pathway fro(n:r inferior olive
is considered as conveyer of error signal between
reference signal and output (Kawato & Gomi,
1992) or between output and estimated output
(Miall & Wolpert, 1996). These signals can be

used for adaptation of filter parameter and model.

2.3 Relation to conventional control architectures

Anderson & Kosut (1991) proposed an iterative
control system synthesis method imitating the
process through which human learns how to wind-
surf. They proposed a method of gradually in-
creasing w as identification proceeds using IMC
scheme. Some work has been done about adap-
tive IMC. Specifically, in Datta & Ochoa (1998),
stability analysis was done and convergence of the
estimation error was proved. But in these works,
adjustable parameter of IMC filter was fixed. In
Papadoulis & Svoronos (1987), adaptive control
architecture like IMC was proposed and adaptive
law of filter parameter based on the size of esti-
mation error y — y was proposed.

In this paper, brain adaptive control architecture
is proposed based on adaptive IMC in Datta &
Ochoa (1998). In their scheme, model is identified
using estimation error y — ¢ and construct a con-
troller using estimated parameter. But from con-
trol point of view, estimation only is not enough.
A mechanism to reduce control error y — L, (s)r is
required and the filter parameter w will take care
of it. In the following, first, methods of estimation
of model and construction of the time varying
controller in Datta (1998) is shown. Secondly,
an adaptive law of filter parameter w (Nagai &
Kimura, 2001) is given.

3. ADAPTIVE ALGORITHM
3.1 Adaptive IMC

Controlled system is represented as

v=el 2

where y is output of the plant, u input of the
plant, A(s) a monic stable polynomial with order
d, and B(s) a stable polynomial with order n.
Assume that d and n are known and plant is
strictly proper, that is n < d.

For estimation, (2) is transformed into linear form
with respect to the parameters as in Datta (1998).
Introduce monic stable polynomial @, (s) with
order d and transform (2) into

_ Qm(s) — A(s)
YT O0G)

(3) can be represented as

B(s)
* Qm(s

[v] IS

y=v'z (4)

where v = [vf,vT]T. v; and vy are coefficients of
polynomial Q. (s) — A(s) and B(s), respectively,



and z = [T, 277, 21 = (pa—1(5)/Qm(5))[y],

22 = (pn(8)/Qm(s))[u], where
pd—l(s) _ [8d71,8d72,---,1]T, (5)
pn(s) = [Snasn_l:"'al]T (6)
Qm(s) —A(s) = U1Tpd71(3) (7)
B(s) = v3 pa(s) (8)

Model for (4) and parameter estimation law are
as follows (Datta, 1998)

j=0"x (9)
0= [kex],v(0) € D (10)
e= Un_%ny (11)
n2, =14 fm (12)
f’m:*nmfm‘}'uQ"'yQafm(O):O (13)

where k is an adaptive gain and positive constant,
fhm > 0 is a constant such that 5= is analytic in
Re[s] > —"2= and Prol] is a projection operation
defined as follows.

Parameter Projection (Pomet & Praly 1992)
Assume that C? function R, (%) satisfies the fol-
lowing conditions,

(1)For any real a € [0, 1], the set {0|R,(v) < a} is
convex.

(2)For any o such that R,(9) € [0,1], 2 £ 0.
(3)Parameter of true plant v meets &( ) <0.
(R, (5(0)) < L.

Under these assumptions, projection is defined as

fm if Ry(8) <0, orif Ry(8) >0

P ) and (8RA”)Tfm§0

rolfm] = R ?ﬁ)%(a_Ru)T
£ — %80 Uag
ST

where f,, = kex. Using projection, estimated pa-
rameter ¢ is assured to be in D = {{|R,(0) < 1}
for all ¢ > 0. D is chosen so that coefficient of the
highest order of estimated numerator polynomial
does not pass 0, estimated numerator and denom-
inator polynomials are stable.

Time varying controller is constructed in the same
way as (Datta & Ochoa, 1998; Datta, 1998). At
first, introduce description A(s, t), which shows a
polynomial or a transfer function derived when co-
efficients of time invariant polynomial or transfer
function A(s) are replaced by time variable ones
and time is fixed. Estimated model of the plant for
fixed t is represented using estimated parameters
ﬁl, ’02 as

P(s,t) = (15)

Where B(s,t) = 0y () pn(s), A(s,t) = Qm(s) —
( )pa—1(s). For fixed t, time varying prefilter
is

t dx

(s,t) = Ld

(s +w(t))®

where dx = d—I so that the order of P~! (s,t )[A/( ,1)
t

equals to d. Then IMC controller for fixed
expressed as

(16)

13(5, t)flﬁ(s, t) (17)
Control input u can be represented as

=P(s,t) "Ls,t)lr — (v — 9] (18)
w(t)*A(s,t)
_ bo(t) 2
= BT [r—en:,] (19)
bo (%)
for fixed t, where bo(t) is the coefficient of the
highest order of B(s, t) and equation (11) was used

in transformation. This can be transformed into

B s,t) (stw(t 4=
U= Qels) — bo(t) [u]

Q.(s)

w(t)¥ A(s,t)
bo(t)

Qc(s)

where Q.(s) is monic stable polynomial whose
order is d. Transform (20) into linear form with
respect, to time varying coefficients

+ [r —en?] (20)

u=i ()2t

QC(S)
+EOHSr-at)

fm  otherwise where [;(t) and I5(t) are time varying parameters

which contain estimated model parameter o(¢)
and a filter parameter w(t). Input is generated
changing these parameters by adaptive laws.

3.2 Adaptive law of prefilter parameter

A small initial value w(0) is taken to make input
small. Because at early period of learning, large
model uncertainty is expected. This is same as
Anderson & Kosut (1991). In their research, in-
creasing w intends to attain desirable bandwidth
through extending bandwidth of closed loop step
by step. Here, adaptive law of w is considered.
For skill enhancement, an adaptive law which
gradually decreases the following value function
proposed in Nagai & Kimura (2001) is used.

1
2n2

z

(y — La(s)[r])? (22)

=



where L, (s) was defined in Section 2.2 and n, is
a normalizing signal often used to assure signals
in adaptive system to be bounded (e.g., Datta,
1998) and also used in model parameter estimator.
Normalizing signal n, is given by

n2(t) =az + f2(t) + gy* (1) (29)
dfé—z@ = =12 f=(t) + 12(t) + 2 (1)
Y \2

+(55)" f=(0) =0

where «, and ¢ are positive constants, 7, a pos-
itive constant such that ch(s) and L,.(s) analytic

in Re(s) > —%.

(24)

Adaptive law is derived from value function (22)
using steepest. decent method. Projection operator
as in (10) is used to keep w(t) in a prescribed
region.

dw aC,
E = PTO[—kza—w],
w(0) € {w|Rw(w) < 1} (25)
k. dy
= Pro[——5(y = L(s)lr) 51,

z

w(0) € {w|R,(w) < 1}

where k, > 0 is a constant adaptive gain. w is a
scalar, so projection for w becomes

fo if Ry(w)<0,orif R,(w)>0

Pro[f.] = ¢ an OR, <0 (26)
(09
f: — Ry(w)f, otherwise
where f, = —%%(1/ — L, (s)[r})g—z and assume that

for any real a € [0,1], the set {w|Ry,(w) < a} is
convex, R,(w(0)) < 1, Ry(w«) < 1, % # 0 for
any w such that R, (w) € [0,1], and w which meets
{w|Ry(w) < 1} is positive.

5) cannot be used because g—z
is not available. So, approximate g_y as follows
in the same way as Jordan & Rumelhart (1992)
which proposed inverse model adaptation method

making use of forward model.

Adaptive law (2

First, assume that estimated model parameters
are identical to real plant (constant) parameters,
that is

B(s,t)

P(s) = P(s,t) = oD

(27)

Then feedback signal en?, = 0 and closed loop
system becomes feedforward. In (21), ignoring the

term en2, = 0, input of the plant becomes
u= P 02 e

So output y is calculated to be

y=P 0l = 5 TR D
7\ Pd(s)
05 (29)

Here, assume that w(t) is small enough in calcu-
lating right hand side of (29). Then,

A

where the relation y = P(s,t)[u] was used, and de-
fine as follows. B(s,t) = bo(t)s™ +by(t)s™ 14+
ba(), i (£) = (1), WE (1) = (w(t), 2G50, .

) bo(t) ’ ’

w(t) b, (t )
bg(t)

Consider that (30) as a real output of the plant

and calculate partial derivative of each side of (30)

with respect to w. Then, g—z is generated as

0 _rpass() Oy W) pua ()

Ow Qc(s) ow  Q(s) ]
o) puls)
+ 0 Qc(s)” (31)
Using adaptive law (23)-(26) and (31), next

Lemma can be shown. Proof is given in Appendix.

Lemma 1 (Nagai & Kimura 2001)

()Ru(wl(t) <1 ¥t >0

(i) (t) € Lo

(iii)If adaptive gain k. is small enough, |%| is
bounded by any small positive constant 4, for all
t>0.

3.3 Properties of the adaptive system

Theorem 1 (Nagai & Kimura, 2001)

Let 7(t) be a piecewise continuous uniformly
bounded reference input. Consider adaptive con-
trol scheme composed of plant (2), parameter
estimator (9)-(14), time varying controller (21)
and an adaptive law of w (23)-(26) and (31). If
adaptive gain k£ of model estimator and adaptive
gain k, of w are sufficiently small, all signals in
the adaptive system are uniformly bounded and
estimation error y — ¢ vanishes asymptotically.

Note that the statement of Theorem 1 is identical
to that of Theorem 5.3.1 in Datta (1998) except
that in Theorem 1, adaptation of w and restric-
tions of adaptive gains k£ and k, are imposed.



Proof of Theorem 1 can be done through almost
the same way as of Theorem 5.3.1 in Datta (1998)
using properties assured in Lemma 1.

4. SIMULATION
Plant is given by

3s+1
$2 4+ 25+ 2

P(s) =

Reference input is 0.2Hz square wave whose am-
plitude is 1. Design parameters are as follows,

(32)

Constants in normalizing signal :
a,=19=01n=1Lnn=1

Initial value of w : w(0) = 0.01

Ideal value of w : w, =5

Adaptive gain of w : k, = 0.1

Adaptive gain of model estimator : k = 10
Initial value of model parameters :

01(0) = =12,02(0) = —15, 03(0) = 16, 04(0) = 15
True value of parameters :

v =3,v2 =4,v3 =3,u4 =1

Polynomial for constructing controller :
Qc(s) =s*+5s+6

Polynomial for constructing model :
Qm(s) =s>+5s+6

Results are shown in Figure 2 to Figure 7. Left side
figures show each signal at 0~200(s), while right
side ones are at 19900~ 20000(s). Figure 2 shows
the output of the plant. As w grows gradually in
Figure 4, y becomes larger. Tracking error y —
L.(s)r is reduced after adaptation as shown in
Figure 7. In this simulation, estimated parameter
v converged to true value.
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5. CONCLUSION

In this paper, an adaptive scheme is proposed as
a possible architecture for brain motor control
which incorporates skill acquisition. The skill is
defined in this paper as an ability to tune a pa-
rameter that controls the gain as well as its band-
width of the adaptive control system. A stability
proof has been established. A design simulation
has been done, that describes the feasibility of
this method. Hopefully, it is desirable to find a
physiological support of this method.
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7. APPENDIX

Proof of Lemma 1
In the proof, v denotes a positive constant. Prop-
erties (i) and (ii) of Lemma 1 are guaranteed
clearly by projection. Proof of claim (iii) is as
follows. First, consider the case

(a) Ry(w) <0, or Ry(w) > 0 and agi“’

In this case, from (25)

In the following, it will be shown that Mﬁm

9y

Lu(s)lr]

(33)

and —Z_i are bounded. Then, from (33), |4 | can
be bounded by any small positive constant 0
by choosing adaptive gain k, small enough. At
first, %(S)M is bounded is shown. From triangle
inequalityz

ly — L)l Jol 1L ()]

Ty Ny Ny

(34)

The first term of right hand side in (34) is evalu-
ated as

|y

Vo +glyl?

|y

— <
Ny

(35)

where

no = (0 + (el 32

+ (llwell3)* + (II( )an) +gy2> (36)

and exponentially weighted L norm (e.g., Datta,
1998) of w is defined as

[N

t

w2 = ([ "Dt @uiryan - @1

0

The facts (lyell3)* > 0, (Irell3)* > 0 and
(I1(22)¢]|32)? > 0 is used in (35). Therefore, - is
bounded. L, (s) is strictly proper because plant is

strictly proper. Using Lemma 2 (shown as bellow),

| Lu()r]] < ([ Lw(I37 72137 < Allrel137 (38)

So
Leloll] ol el g
ne ne v + ([[rel37)?

and it follows that
y=La(s)[r]

%‘jm is bounded. As a result,

is bounded.

z

9y
Next, it will be shown that 2« is bounded. In (31),

elements of hq(t), %, % are bounded be-

cause they are composed of constants, #(t), bi(t),
-+, bp(t) and w(t) which are bounded and by (t) #
0 for all t > 0 by projection. Define hT(t) =

gZ?;i(fgi).).,.éﬁl;ﬁd(t)) and h3 (t) = (h21(t), -,
ool =m0 NE ﬂgfi] o) 1(3)[2_5})]‘
B e LR vl
N ah;,;(t) szs) ] 4
e o

Here, using Lemma 2,

29| <yt el + Al (a1)

ol meets the followin, li
P g inequality
a z z
B alllF AT,
Ny Nz
So, 2= is bounded.

a
After all, uLn*fm and % are bounded.
(b)In the case of otherwise.

In this case, R, > 0. And projection keeps w
in {w|R,(w) < 1}. Moreover, by an assumption,
R, (w(0)) < 1. As a result, 0 < R,(w) < 1. So,
it follows that |%| = |f, — Ry (w)f.| = |f.||1 —

Ro(@)| < |f2| where f. = =% (y — Lu(s)[r]) 5%
So in the same way as the case (a), claim (iii) of
Lemma 1 can be proved. This completes the proof.

Lemma 2 (Datta, 1998)
Consider the following linear system,

y="T(s)[u] (43)

where, T'(s) is a rational function of s and assume
that u € Ly, and T'(s) is analytic in Re(s) > —Z.
If T'(s) is strictly proper, then

(O < (1T ()3l (44)

where

I = o] [ [rtw - D} @



