

A SOFTWARE FRAMEWORK FOR MOBILE ROBOT SENSOR FUSION AND
TELEOPERATION

P.Pérez, J.L.Posadas, J.E.Simó, G.Benet, F.Blanes

Departamento de Informática de Sistemas y Computadores (D.I.S.C.A.)
Universidad Politécnica de Valencia, Spain

{ pperez,jposadas,jsimo,gbenet,pblanes}@disca.upv.es

Abstract: This paper describes an architecture for mobile robots that is suitable for
teleoperation. The architecture is hybrid and has three levels: a reactive level, a
deliberative level and an interface level. Reactive level is distributed and it is made up of
sensor nodes and controllers. On the other hand, deliberative level establishes the
knowledge and the reasoning capability to the robot. This deliberative level uses reactive
level (sensor and actuator values) through the interface level. Interface level is made up of
a communication system that allows local and remote access to the robot from any
deliberative node. The architecture has been implemented as a case study in the YAIR
robot, enabling its teleoperation from a remote node using Windows CE.

Keywords: Mobile robots, Teleoperation, Communications Systems, Distributed computer
control systems, Sensor fusion, Fieldbuses.

1. INTRODUCTION

Teleoperation and remote changes in mobile robots
behaviour is often necessary. For example, for
changing the operation mode, status monitoring or
manual control of the robot. Therefore, it is important
to develop a system to allow easy runtime access to
the robot. The goal of the work is to develop a
multilevel architecture for mobile robots that is based
on a communication system called SC (Posadas,
1997) that allow transparent local and remote access
to the robot from any node. The SC is a
communication system used in various applications
all related with distributed control with soft real-time
constraints. The combination of the SC and a reactive
local control in the robot allows an easy
communication between nodes accomplishing with
real-time constraints.

The architecture has been implemented and tested in
YAIR1 (Gil, 1997; Blanes, 1998; Blanes, 2000), an
autonomous robot with intelligent sensors that
produces different measurements about the
environment and its location within it. A case study
for this robot teleoperation has been developed using
an embedded PC running Windows CE in a real
scenario.

The development of the communication system is
based on the concept of temporal firewall (Kopetz,
1998). Therefore, the values of the sensors and
actuators are labelled with the time of its acquisition.
This time stamp is updated through the different
levels and components of the architecture and
communication system. When the requested values of

1 YAIR stands for Yet Another Intelligent Robot, and is currently
being developed under CICYT grant TAP98-0333-C03-02 from
the Spanish Government

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

the sensors arrive to their destination, the
corresponding software can validate them according
to the time elapsed since they were obtained.

In the following sections, the developed work and the
results obtained are described. First, the global
architecture of YAIR is described. Then, the
implemented communication system called SC is
presented. Finally, the results of the tests carried out
are presented.

2. ROBOT ARCHITECTURE

The distributed architecture is hybrid and it is
composed by three levels: a reactive level that deals
with real-time constraints, a deliberative level without
real-time constraints (although good mean response
time must be guaranteed as well as some processing
distribution capabilities), and an interface level
acting as a connection between the other two levels.

YAIR is an autonomous robot prototype (Figure 1)
that has been built for the experimental study of
reactive systems, sensor fusion and distributed
computing.

Fig.1: YAIR Robot Prototype

The backbone of the YAIR’s reactive level is the
CAN bus (Bosch, 1991), a fieldbus initially
developed for the automotive industry that is actually
being used in numerous technological areas, specially
in mobile robotics, due mainly to its reliability and
versatility. Its medium access mechanism, its
multimaster capability, and the ability to detect
transmission errors make it suitable for distributed

real-time systems. Reactive level is made up of
intelligent sensor modules and computing nodes that
use the bus to share the sensory information.

Reactive level of YAIR has mainly three sensory
nodes: a motion controller and odometry reckoning
node, an infrared node that supervises 16 IR detectors
(it detects objects and estimates the distance from
them and the robot within a range from 10 cm. to 1
m.), and an ultrasonic sonar node that provides range
information about environment objects up to 4 metres
in distance.

Sensory nodes have reckoning capability, meaning
that they pre-process the information. This pre-
processed data (sensations) are shared through the
bus, making it accessible to the remaining nodes.
(i.e.: the speed vector computed by the motion
controller can be used by the ultrasonic sonar module
to point the sonar head towards the displacement
direction).

Communications between processes running in CAN
nodes use shared variables. Processes use an uniform
interface to access to the shared variables: Request
Function (to read an specific variable) and Write
Function (to write an specific variable). This interface
uses CAN messages in a transparent way. When a
process needs to know data from a sensor, it just only
reads the corresponding variable or object.

Deliberative level of YAIR has a local control node
that manages the external communications and
executes the main control application program.
Deliberative level establishes the knowledge and the
reasoning capability to the robot. It can be
implemented by external nodes for distributed
processing, remote controlling, status monitoring, and
so on. Communications between these two levels and
external nodes are possible using an interface level
that it is described in the following section.

3. COMMUNICATION SYSTEM
Due to the different set of processes involved in robot
sensor fusion and control, an heterogeneous and
flexible framework has been designed to access all
information with independence of the communication
channel used. This is performed using common
interface for all the channels (adapter) defined in the
CAdapt C++ class. This class only defines a set of
virtual functions ensuring the coherence for all
derived class from this. Actually in the robot there are
three different physical channels to obtain data: the
CAN bus, serial ports and Radio-Ethernet network.
This last one is covered using an application interface
layer called SC. With these assumptions three
adapters have been developed: (CAdaptCAN,
CAdaptCOM and CSCAdapt) with the same
interface.

With this approach, independence from channels is
obtained, and the problems related with them (frame
formats, bit or character oriented communication etc)
are hidden in the adapter objects which resolve these
details internally, offering a common access to all the
information in all levels, to fused information from
different sources.

High-level access to distributed data has been
provided by developing a system called
Communication System (SC) (Posadas, 1997;
Posadas, 2000) (see fig.2). This SC hides
communication details behind an uniform bind-
notification interface.

SC holds an internal representation of the data
objects using a distributed blackboard (Penny, 1989).
This data structure is continually updated with the
changing values of the objects. SC needs also a
program instance running in each node of the system.
SC software establishes the required communications
to ensure that all the copies of the distributed
blackboard are consistent.

Processes must only execute local accesses to contact
with all the system. That is, when a process needs to
obtain the value of a sensor (for example, the velocity
of the motors) it must only to contact with the
associated object, which is defined in the local SC
that is executing in the computer where belongs the
process.
The system is Event Driven. So, it’s possible to
associate the code execution with specific events (a
change on the value of one object).

Several C++ classes and interfaces to contact with the
SC have been defined. In this form, processes
connect with SC in similar way following these steps:

1. First, processes have to instance an object
from the CSCAdapt class. This class offers a
common interface that permits local
accesses with SC using Dynamic Data
Exchange (DDE).

class CAdaptSC : public CAdapt
{

 bool Init();
 bool Finish();
 bool RegisterSensor(CSensor* pSensor, char* pId);
 bool UnregisterSens(CSensor* pSensor, char* pId);
 int Write(char* pBuffer, int len, char* pId);
 int Read(char* pBuffer, int len, char* pId);
};

2. Second, processes have to implement an
object from the parent class called CSensor,
too. CSensor is a virtual class that defines a
set of functions which have to be

implemented to communicate with SC
through CSCAdapt class.

class CSensor: public CObject
{
 public:
 virtual bool OnInit(CAdapt* pAdapt)=0;
 virtual bool OnFinish(CAdapt* pAdapt)=0;
 virtual bool OnMessage(const char* pBuffer, int
len, const char* pId) = 0;
};

3. Third, processes register its sensors objects
calling RegisterSensor function from
CSCAdapt. With this function, processes
associate a sensor object (pSensor
parameter) with an object (pID parameter)
of the SC distributed blackboard ("pID”
parameter is the name of the object in the
blackboard).

4. After that, when the value of the blackboard
object changes, the CSCAdapt object
instance executes the OnMessage function
of the sensor object. In this way, a process
receives new values from SC automatically
(data is obtained from pBuffer parameter of
OnMessage function).

5. When a process wants to change the value of
a blackboard object, it only has to execute
the local Write function. This is the way that
processes in the system can control the robot
using the variables associated with the
actuators.

The distributed blackboard generated by the SC
software is extensive to the data in the CAN network.
The gateway software ISCCAN performs specific
translations between CAN protocol and SC data (see
fig.2). The ISCCAN gateway supports
communication of the CAN raw data, as well as the
mapped mode that consists of a bi-directional
mirroring of CAN identifiers and objects in the
distributed blackboard. The mapped mode allows
processes running in every node into the IP network
to have access to the CAN information through the
SC software and the defined notification scheme.

Two kind of problems arise in implementing the data
chain that links low-level processes running in CAN
nodes and high-level processes running in computer
nodes:

� Data format conversions and serialisation

coherence.
� Semantic guided data filtering.

The ISCCAN gateway solves the data format
conversion and serialisation using ASCII-Hex
representation of CAN binary streams. SC distributes
these streams for selective processing. Processes
translate this information using a supplied object

toolbox. The SC mapped mode allows the use of
defined filtering by applying the SC general bind-
notification scheme.

Node.1 Node.2 Node.n

CAN

Distributed CAN Objects System

Black-
Board

Process
SC

Black-
Board

Process

SC

Black-
Board

Process

SC

Black-
Board

Process

ETHERNET

RADIO

Sensors

Actuators

Reactive
Level

Interface
Level

Deliberative
Level

YAIR Robot

SC
ISCCAN

Fig.2: Communication System

The SC blackboard level is intended to provide
communications for deliberative soft real-time
processes. This kind of processes must manage
communication overloads of 20ms introduced by the
SC+ISCCAN system.

Typically, deliberative processes are related to
sensory integration, data fusion and map building. In
this case, when temporal and spatial sensory fusion is
essential, time properties must be attached to sensor
data and control actions. The time property attached
to each SC blackboard object is in the form of a time
firewall (a register that accumulates all the
communication overloads). To achive this, we attach
a temporal counter reset at the moment of information
generation, which is increased between stages in the
same distributed node. If this information travels
through the communication channel, the information
time is increased using the maximum latencies of
transmission and preset with this time in the reception
instant. From this information, each process using
data have available the tuse-tobservation difference and
uses it in data integration tasks.

In a recent paper (Han et al., 2001), a remote control
architecture for robots is described. It is based on the
control of the internet time delay, and reduces the
time difference between a real internet-based robot
and a virtual one. On the other hand, this work
distinguishes between communication time (where
internet time delay is unavoidable) and processing
time. That is, deliberative nodes communicate
through Internet to send information and program
code (with soft real-time restrictions) to reactive
nodes, and then reactive nodes process this
information and program code with hard real-time
restrictions.

Thus, it is not necessary to consider internet time
delay to control obstacle avoidance. In reactive nodes
are the processes that control automatically obstacle
avoidance, and in deliberative nodes are only the
processes which send to the robot information about
the path to follow (objective). Reactive nodes receive
this information (reception time delay is not critical)
and compose it with the local information about
obstacle avoidance. The result is a forward movement
to the objective without crashing into obstacles. The
next section describes the prototype implemented to
test the architecture designed.

4. PROTOTYPE

Each deliberative node of YAIR uses SC to gain
access to distributed CAN objects system through the
gateway ISCCAN. Processes that provide YAIR a
deliberative behaviour can be executed in every
computer where a local SC instance exists. These
computers are called homogeneous nodes because of
they belong to the SC configuration (see fig.3). There
are nodes where it is impossible to execute a SC
instance (for example, an embedded PC where the
operating system does not have the SC requirements
or and Unix system), in these cases the processes
have to communicate with a remote SC through a
specific gateway application. These nodes are called
heterogeneous nodes (see fig.3). For example, there is
a socket gateway that permits every process in every
heterogeneous node to connect with SC establishing a
standard socket connection. Processes connect with
the gateway and this communicates with SC.

Node

Node

Node

Infrared

Ultrasonic

Motion
CAN

G
at

ew
ay

SC

Socket
Gateway Bl

ac
kb

oa
rdControl 1

Deliberative node Reactive nodes

YAIR Robot

SC
Control 2

Homogeneous
node

Control 3

Heterogeneous
node

Windows
CE

RADIO ETHERNET

IS
C

C
A

N

Fig.3: Implemented prototype communications

architecture.

Each reactive node can execute basic behaviours
using real-time distributed data on CAN. Control
actions are obtained in each node using the behaviour
composition model described in (Simo, 1997). This
model is similar to Arkin’s model (Arkin, 1990) with
the addition of the distributed behaviours selection
system based on motivation concept. In agreement

with this model, teleoperation can be considered as
the execution of a behaviours set that contribute to
control actions together with the executed behaviours
in reactive nodes (i.e. obstacles avoidance).

On the other hand, teleoperation can consist of the
remote execution of a motivation tasks set that
contribute to basic behaviour composition.

In the last release there are three CSensor derived
classes: CSensorIR, CSensorBrujula, CSensorHaz,
CSensorTelemando and CSensMotores.
The CSensorIR reads data from the IR sensor in the
YAIR robot using the CAN bus adapter. The instance
of this derived class holds a thread that periodically
(50 milliseconds) reads a communication object in
the CAN adapter. This involves sending a CAN
message to the IR sensor modules which returns
another one with data from sensors. This message is
filtered (extracting the header), routed to the objects
interested in this information (those registered) using
OnMessage function. Once the information arrives to
the CSensIR instance, a pre-processing is performed
and data stored internally.
The CSensMotores derived class works in a similar
way, reading periodically (100 milliseconds) a
communication object to obtain from motor encoders
the information about odometry. This information is
the base for location calculus and could be fused with
the data from CSensorBrujula (compass) for position
estimation.

Fig.4:Graphical representation of the CSensorHaz
after fusing the information obtained from CSensIR
object.

The CSensorHaz is an object that holds data fused
from CSensIR information. To obtain that
information, the CSensIR object offers a set of
interface functions that return the value of reflected
light and ambient light from a sensor in the ring.
These values are transformed to distance units in the
CSensorHaz object and fused to a ring representation
using the distance values, the angle covering each
sensor, robot position and time elapsed. This ring
representation could be used to avoid obstacles in the

environment. The graphical representation of the
CSensorHaz is shown in Figure 4.

Finally, the CSensorTelemando is a sensor that acts
like a joystick using a graphical representation in a
tactile panel. The data from the sensor (orientation,
speed) is used to form a direction vector for the
robot. This vector is sent to the robot using the
CSCAdpat described in previous sections.

Using these software components, a software module
based on Windows CE for remote control of YAIR
has been built to validate the communication system
and the communications among SC and
heterogeneous nodes through gateways. This module
allows to send the speed for each wheel to the motion
controller.

Windows CE software is executed in an embedded
PC (fig.4). The application establishes a radio
Ethernet connection with a “socket gateway” that is
running in the deliberative node of YAIR (fig.3).

The “Socket gateway” sends to local SC the messages
that it receives from Windows CE module. On the
other hand, SC sends the received messages to
ISCCAN gateway and, finally, ISCCAN sends them
to reactive nodes through CAN bus. In this way,
motion controller node can receive messages from the
remote embedded PC and it can compose the
corresponding control actions.

Fig.5: Robot teleoperation using an embedded PC

The Windows CE application has an easy graphical
interface (fig.5) that allows to select the desired target
direction of YAIR. Then, it is sent to motion
controller node through a wireless IP network and the
described SC+ISCCAN facilities. Composition of
teleoperation orders (desired target direction) with
reactive behaviour orders (obstacle avoidance)
produces the suitable commands to be sent to the
motion controller. The result is a friendly and robust

teleoperation because of operator has not to worry
about robot collisions.

5. CONCLUSIONS

A communication system suitable for remote control
and access to real-time systems with distributed
sensory architecture is described. The main
advantage of the system is that different type of
computers (from a palmtop to main workstations in
the network), could be linked to access the robot
throught the distributed blackboard.

This system has been implemented in the YAIR
robot, an autonomous robot with intelligent sensors
that produces different measurements about the
environment and its position within it.

The SC+ISCCAN combination solves the high-level
data diffusion in the distributed blackboard system.
Remote accesses to YAIR are possible from
homogeneous SC nodes and from heterogeneous
nodes using gateways.

A Windows CE module is described for controlling
the movements of YAIR. This application allows to
send speed values to motion controller node through
a wireless IP network and the described “Socket
gateway” and SC+ISCCAN facilities.

6. REFERENCES

Arkin, R.C., “Integrating behavioural, perceptual

and world knowledge in reactive navigation”.
Robot and Autonomous Systems vol. 6, pp. 105-
122, 1990.

Blanes, F., Benet, G., Pérez P., Simó, J.E. (2000)
“Map Building in an autonomous robot using
infrared sensors”, in proc. of IFAC Symposium
on Intelligent Components and Instruments for
Control Applications SICICA’00. Buenos Aires.

Blanes, F., G. Benet, M. Martinez, J.Simó. (1998).
“Grid Map Building from Reduced Sonar
Data”. in proc. of IFAC International
Symposium on Intelligent Autonomous
Vehicles. IAV’98. Madrid.

Bosch (1991) “CAN Specification 2.0A”. © Robert
Bosch GmbH.

Gil, J.A (1997). “A CAN Architecture for an
Intelligent Mobile Robot”, in Proc. of SICICA-
97. pp.65-70.

Han Kuk-Hyun, Sinn Kim, Young-Jae Kim, Jong-
Hwan Kim (2001). Internet Control Architecture
for Internet-Based Personal Robot. Autonomous
Robots 10, 135-147.

Kopetz, H., Nossal, R. (1998) “Temporal Firewalls
in Large Distributed Real-Time Systems“. in
proc. of 6th IEEE Computer Society Workshop

on Future Trends of Distributed Computing
Systems.

Penny, H. (1989) “Blackboard Architectures and
Applications”. Edited by V. Jagannathan,
Rajendra Dodhiawala, Lawrence S. Baum.

Posadas, J.L., J.Simó, F.Blanes (1997). “Un modelo
para el desarrollo de aplicaciones distribuidas.
El Servidor de Comunicaciones”. in Proc. of
Jornadas españolas de Automática (JA’97).
Gerona 1997.

Posadas, J.L., Pérez, P., Simó, J.E., Benet, G.,
Blanes, F. .(2000) ”Communications Structure
For Sensor Fusion in Distributed Real Time
Systems”. in proc. of 6th IFAC Workshop on
Algorithms and Architectures for Real-Time
Control AARTC’00.

Simó, J., A. Crespo, J.F. Blanes (1997). “Behaviour
Selection in the YAIR Architecture”. in proc. of
Proceedings of IFAC Conference on Algorithms
and Architectures for Real Time Control
AARTC'97. Vilamoura, Portugal.

