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Abstract: The problem of finite-horizon H,, tracking for linear continuous time-

varying systems with stochastic parameter uncertainties is in vestigated for both, the

state-feedback and the output-feedback control problems. We consider three tracking

patterns which include the case where the reference signal is previewed in a fixed time-

interv al ahead. In the state-feedbadk case a game theory approach is applied where the

controller plays against nature and where necessary and sufficient conditions are found

for the existence of a saddle-point equilibrium. The output-feedback control problem

is solvedas a max-min problem with the application of a bounded real lemma. A

simple example demonstrates the theory. Copyright C 2001 IFA C
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1. INTRODUCTION

T racking is one of the main fundametal problems
in control theory ,where the system output is
required to be as close as possible to an external
reference signal. The H, tracking cortrol problem
with preview for contin uous-time setting has been
introduced by (Shaked and deSouza, 1995). This
method processes the information that is gath-
ered on the reference during the system opera-
tion and by applying the game-theory approach
it derives the optimal tracking strategy .Control
with preview was also treated in (Kojima and
Ishijima, 1997) for continuous-time systems, using
state-space H., theory for infinite-dimensional
systems. The H, con trol and estimation of state-
multiplicative systems has been largely treated in
the last decade (see Dragan and Morozan, 1997,

hinriechsen and Pritchard, 1998 and the refer-
ences therein). This paper solves the important
problems of both, state-feedback and dynamic
output-feedback con trol tracking for the state-
multiplicative systems, which has never been dealt
before.

Notation: We denote expectation by £{-} and
by [Q(t)]+, [Q(t)]- w e denote the causal and aui
causal parts, respectively, of a function Q(t). We
pro vide all spacesR*, k > 1 with the usual inner
product < -,- > and with the standard Euclidean
norm || - ||. By ||f(#)||% w edenote the product
of fT(t)Rf(t). We denote by L?(Q, R¥) the space
of square-integrable R*— valued functions on the
probability space (Q, F,P). By (F:)t>0 w e denote
an increasing family of o-algebras F; C F. We
also denote by L2([0,T); R*) the space of nonan-
ticipative stoc hastic process f(-) = (f(t))efo,77 in



RF with respect to (Ft)telo,T) satisfying:

IFOIE, = &{fy IF@IPdey = [T eQI7®)I12}dt < oo.
Stochastic differential equations will be inter-
preted to be of Ito type.

2. THE STATE-FEEDBACK TRACKING

Given the following linear continuous time-varying

system with deterministic tracking signal of r(¢):

dz = [A(Dz(t) + B1(t)w(t) + Ba(t)u(t) + Bs(t)r(t)|dt
+E®)z(t)dB(t) + G(t)u(t)d((t), ©(0) = zo (1)
z(t) = C1(t)z(t) + Di2(t)u(t) + Dis(t)r(t)

where z € R™ is the system state vector ,
z(0) is any norm-bounded vector in R", w €
L?([0,T); RP) is the exogenous disturbance sig-
nal, z € R? is the signal to be controlled and
where A(t), Bi(t), B2(t), Bs(t), Ci(t), Dia(t),
Dy3(t), F(t) and G(t) are real known, piecewise
continuous time-varying matrices of the appro-
priate dimensions. The variables §(¢) and ((t)
are zero-mean real scalar Wiener processes that
satisfy:

£{ap(n)} =0, £{dC(t)} =0, E{dB(1)*}=dt,
E{d¢(t)?y=dt, E{dB(t)d((t)} =adt, |a| < 1.

We denote R(t) 2 DT, D;». Our objective is to find
a state-feedback control law u(¢) that minimizes,
for the worst-case of the process disturbance w(t)
and the initial condition g, the energy of £{z(t)},
with respect to the uncertain parameters, by using
the available knowledge on the reference signal.
We, therefore, consider, for a given scalar v > 0,
the following performance index:

Tp 2 ([T =] 12dt 42 [T lw(0)]2de}

+&x"(T)Pra(T) — +*||zol|3—1,» R >0, Pr >0.(2)
We consider the following Riccati-type differential
equation:

—Q=QA+ATQ+~2QB:BfQ+cfcy (3)
—STR™'S+ FTQF, Q(T)=Pr

where R=R+GTQG, §=BYQ+aGTQF + DL,C1.
The solution of the state-feedback tracking prob-
lem is obtained by the following theorem:
Consider the system of (1) and Jg
of (2). Given v > 0, the state-feedback tracking
game possesses a saddle-point equilibrium solution
iff there exists Q(t) > 0,Vt € [0,T] that solves (3)
such that Q(0) < v*R~1. When a solution ezists,
the saddle-point strategies are given by:

Theorem 1:

25 = (Y’R™" = Qo) ~'0(0), w* =77 ?B{ (Qz +0),u" = (4)

—rR7Y(BTQ + DLCy + aGTQF)x + DL, D1ar + BT 6,.],

where w*, xy and u* are the maximizing and min-
imizing strategies of nature and the controller,
respectively, and where

0(t) = —AT0(t) + B,r(t), t € [0 T, 8(T) = 0,(5)

with A =A — B,R~Y(DT,Cy + aGTQF)H~r~ 2B, BT —

BsR'BIQ,B, = STR'DLDi; — (QBs +
CT D13), and where 8. 2 [0(t)]+ (i-e the causal
part of 6(-)) satisfies:

bc(T) = —=AT(7)0c(7) + By (T)r(7), t <7<ty
t+hif t+h<T 6
tf:{TJr Z: tih;T fclty) = 0. ©)

The game value is then given by:

Jg(r,u*,w*, zf)= J(r) +5f0T HB;[G}_Hzéldt, where
J(ry =2 [T ||BTo|2dte [ ||Ry*(BY 0+ DT, Diar)|2dt
+& [0 || Digr||2dt +2€ [ 0T Byrdt +4=|0(0)[|3,, with
Py =[R™' = 72Q(0)] "

Proof The proof of the Theorem is the stochastic
equivalent of the one in (Shaked and deSouza,
1995).

Next we consider the following three different
tracking problems. 1) Stochastic Heo-tracking
with full preview of r(t), 2) Stochastic Heo-
tracking with zero preview of r(t), and 3) Stochas-
tic Hyo finite-fixed preview tracking of r(¢) : In all

three cases we seek a control law u(t) of the form

u(t) = Hy (t)z(t) + H-(t)r(t), where H,(t) is a
causal operator and where the causality of H,(t)
depends on the information pattern of the refer-
ence signal. For all of the above three tracking
problems we consider a related linear quadratic
game in which the controller plays against nature.

We, thus, consider the following game:

Find w*(t) € L*([0,T); R?), u*(t) € L1[0,T] and
xgy € R™ that satisfy:
JE(r,u*,w,:i‘g) *g Je(r,u”, w”, zq) (7)
< Jg(r,u,w*,z5) Vr(t) € L2[0,T],

where w*, z§ and u* are the saddle-point strate-
gies.
We arrive at the following results:
Corollary 1 Stochastic H.,-Tracking with
full preview : The tracking signal is perfectly
known over the interval t € [0,T]. In this case
0(t), is as in (5) and the control law is given by:
u= Kyx + K,r + Ky0, where

K. = R YBYQ+ DLCi +aGTQF), (8)

Ky =—-R'DI,D13 and Ko =—-R'BI.

In this case Jg(r,u*, w*,z§) of (7) coincides with
J(r) of Theorem 1.
Corollary 2 Stochastic H.,-Tracking with
no preview : The tracking signal is measured on
line i.e at time t r(7) 4s known for T < t. In this
case the control law is given by u = K,x + K,r



and the ezistence of (7) is guaranteed where
Tp(rut w*,ag) = € [ ||R-'/2BY6|2dt + J(r)
where 0(-) satisfy (5) and J(r) equals that of The-
orem 1.

Corollary 3 Stochastic H.-Tracking with
finite fixed-preview : The tracking signal r(t)
is previewed in a known fized interval i.e r(7)
is known for T < t 4+ h where h is a known
preview length. Since at time t, r(t) is known for
t < min(T,t + h) the following control law is
obtained:u = K,r + K,.r + Ky0., where K,, K,
and Ky are defined in (8) and 6. is given by (6).
The above controller achieves (7) with
Tp(r,u*,w*,xg) = J(r) + € [} ||R-/2 B (6] |dt
and where J(r) is defined in Theorem 1.

3. THE INFINITE-HORIZON CASE
We treat the case where the matrices of the system
in (1) are all time-invariant and T tends to infinity.
In this case the solution Q(t) of (3), if it exists,
will tend to the mean square stabilizing solution
of the following equation:

QA+ATQ+~72@B1BY @ + cTC1-STR™'S+FTQF =0,

assuming that the pair (IIC;, A — ByR~'DTL,C)),
Il = I — D3R~ DY, is detectable (see Theorem
5.8 in Dragan et al., 1992 ). A strict inequality
is achieved from (3) for (w(t),z,) that are not
identically zero, iff the left side of (3) is strictly
less than zero (for the equivalence of (3) and
the corresponding inequality (see Hinriechsen and
Pritchard, 1998)). The latter inequality can be
expressed in a LMI (Linear Matrix Inequality)
form in the case where « = 0 and DL,C; = 0.
We arrive at the following theorem:

Theorem 2: Consider the system of (1) and
JEg of (2) with T goes to oo and with con-
stant matrices, DT,C; = 0 and a = 0. Then,
for a given v > 0, there exists a strategy u*
that satisfies Yw(t) € L?([0,00); R?), x, € R™,
Tp(ru*,w,z0) < J(r) + & [7°[|R-Y/2BT[6]_||dt,
where J(r) is given in Theorem 1, with the upper
limit of the integral goes to infinity, iff there exists
a positive-definite matriz P € R™ ™ that satisfies

the following LMI:

Y1 B1 PcT ByGT PFT
BT 421, o0 0 0
P01 0 0 | <0.(9)

where T = Aﬁ-}- pPAT — BQR_IBg.
Proof: The inequality that is obtained from (3)
for « =0 and DL,C; =0 is

QA+ATQ+~~20B BT Q+CTC1—STR™'S+FTQF <0,

where § = BT Q. Denoting P = Q~', we multiply
the latter inequality by P from both sides and
obtain, using the matrix inversion lemma and the
identity: a[I+ Ba]™! = [I+ afB] ', the following
inequality:

AP 4+ PAT 4+ 472B1B] + PCTC1P — BsR™'B]
+B:GT[P +GR™'GT1"'GBY + PFTP~'FP < 0.
By using Schur’s complement formula,we obtain

the LMI of Theorem 2.

4. OUTPUT-FEEDBACK TRACKING
We consider the system of (1) where G = 0 and
where the system output is

dy(t) = [C2(t)z(t)+ D21 (Yw()]dt+ H (t)z(t)d((t)+n(t)dt

where y(t) € R* and where ((t) satisfies E{d((t)*} =
dt, £{dp(t)d((t)} = 0. Like in the state-feedback
case we seek a control law u(t), based on the infor-
mation of the reference signal r(t) that minimizes
the tracking error between the the system output
and the tracking trajectory, for the worst case of
the initial condition xq, the process disturbances
w(t), and the measurement noise n(t). We, there-
fore, consider the following performance index:
To(ru,w,n,z0) = Jp(ru,w,o) — +2E [ |In(t)]|2dt,
where Jg is given in (2). Similarly to the state-
feedback case we solve the problem for the above
three tracking patterns. The problem is solved
along the lines of the standard solution where
use is made of the state-feedback solution of sec-
tion 3, thus arriving to an estimation problem to
which we apply a Bounded Real Lemma (BRL)
for tracking systems, which is partially derived
from the state-feedback solution. We first bring
the following BRL solution:

4.1) Bounded Real Lemma for tracking
systems: We consider the following system:
de=[A(t)z(t)+ Ba(t)r(t)]|dt+ F(t)x(t)dA(t)) (10)
B1(B)w(t)dt, x(0) = zo, 2(t) = C1(t)x(t) + D13 (t)r(t),
which is obtained from (1) by setting Ba(t) = 0
and Di2(t) = 0. We consider the following index
of performance:

AT 2 20 (T 2 2 2
Jp =€ [ 1l2(0|Pdt —~2€ [ [lw(®)|2dt —v?[zoll%-.
where R > 0. We arrive at the following theorem:



Theorem 3: Consider the system of (10) and
the above Jp. Given v > 0, Jp satisfies Jp <
J(r,€) Yw(t) € L*([0,00); R?), z, € R", where
J(r.e) = & [ |ID1srl|dt + =€ [ || BT 0)|dt

+28{ [ 07 Brdi+116(0)|%_, }, iff there exists Q(t) >
0,Vt € [0,T] that solves the following Riccati-type
equation:

_Q QA-l—ATQ+7_2QBIBITQ+C’1TC&+FTQF (11)
Q(0) =y*R™! — eI,

for some € > 0, where
i(t) = —ATi(t) + Bor(t), te[0T], §(T) =0, (12)

and where A = A + v~2B,BTQ, B, =
CT'Dy3).
Proof: The solution of the BRL does not acquire

-[QB; +

saddle-point strategies (since u(t) is no longer an
adversary). It can, however, be readily derived
based on the first part of the sufficiency proof of
Theorem 1 where we set B2(t) = 0 and Di2(t) =
= 0. We obtain the
following index of performance :

7€ [ llw =2 BT (Qu+0) |,
The neccesity follows from the fact that for r(t) =

0, one gets J(r,e) = —zlexy and thus the exis-

0, and where we take Pr

J=7?|zo —:v0||2 71

tence of Q > 0 that solves (11) is the necessary
condition in the stochastic BRL (Dragan et al.,
1992). By taking small enough values of € in Q(0)
the neccesity proof still holds. We note that the
choice of € > 0 in Q(0) of (11) reflects on both,
the above cost value of J(r,€) and the minimum
achievable 7. If one chooses 0 < € << 1 then, the
cost of J(r,€) increases while the solution of (11)
is easier to achieve, which results in a smaller ~.
The choice of large €, on the other, hand causes
the reverse effect, which leads to a larger ~.

Due to the special structure of the stochastic
uncertainty in the system of (1) together with
dy(t), the solution of the output-feedback control
problem, can not be obtained by applying a saddle
point strategies but rather as a max-min problem.
We consider the system of (1) together with dy(t)
solution Q(t) > 0
over [0,7T]. Using an expression which is similar

and we assume that (3) has a

to Jg(r,u,w,z) in the state-feedback case (see
equation A.5 in Shaked and deSouza, 1995), the
index of performance turns to be:

Jo(rsu,w,n,x0) = —v2||zo —on2 1 —72f [|n(t)]|dt,
+£ fOT u+R=18Tz+ R~ (BT9+D1T2D13T)}II;dt+J(r)
—2E [ lw — 2 BT (Qx + 0)|dt

where J(r) is defined in Theorem 1 and where we
take G = 0 in both R and S following (3). We also
note that in the full preview case [8(t)]+ = 6(¢).
We define
w(t)
u(t)
where w*(t) is defined in (4). We obtain:
To(r,u,w,n, o) = —||zo 40\\20,1 — € [ ||@l?dt

+gf

=w(t) - ()
=u(t) + [D12D13T+Bgﬂ} (13)

|1/ u+Clx]H2dt+J( v2e [ n(t)]2dt,

with ) = [BgQ + DIL,C4] and where Py =
[R™t — 7*2Q( )]7t. We seek a controller of the
form

u(t) = —Cy (1)@ (t).
We, therefore, re-formulate the state equation
ofthe system and we obtain:

dz = [A(t)z(t) + B1(t)w(t) + Ba(t)a(t)
+r(t)]dt + F(t)x(t)dB(t), 1

where
A(t) = A+~72B1BTQ, 7(t) = [B3 — BaR™}
T p—1pT —2 T (15)
DL, Dislr — [BoR 'BY —4 2B, BY9.

We consider the following Luenberger-type state

observe_r
di(t) = Ai(t)dt + L{diHCai(t il +g(0dt, #(0) =0, (1)
2(t) = Cri(t), Cy=Cy+v 2 DnBfQ

where

=y—v"'DauBTO, g(t) = Baa(t) + (). (17)

<

We note that § = Cox(t) + Hz(t)((t) + Doy +
n(t). Denoting e(t) = x(t) — £(t) and using the
latter we obtain: de(t) = [A — LCyle(t)dt + Bw(t)dt
+[FdB(t) — LHd((t)]z(t), where we define

Defining &(t) = (=7 (t) " ()", #(t) =[r"(t) 0T ()"
we obtain

de(t) = [Adt—l—Fd,B( ) + Hd((1))é(t) + Buud(t)dt (18)
+Bgi(t)dt, £7(0) = [zT(0) 2T (0)]", #(t) = Cr&(1),
where

~ A—BxCy B2Cy ~ B 0
A= 0 ZLC’Z]’Blz[B1—LD21 —L]’

, Ci =10 C4],
—LH 0] 1=l
5 |:B3—B2R1D¥12D13 BoR™'BY —~72B BT
3 =
0 0

] (19)

Applying the results of Theorem 3 to the system

of (18) with the matrices of (19

following Riccati-type equation:
P=PA+ATP+y"2PBBTP + ATPH + FTPR

), we obtain the



Po11 —0.592pI

+CT ¢, P(0) = [0.572[)1 0521 ] , (20)
where ]30,11 = v’R7' —Q(0) — el +0.59pI and
with € > 0, p >> 1. The initial condition
of (20) is derived from the fact that the initial
condition of (18) corresponds to the case where
a large weight of say, p >> 1, is imposed on
Z(0) to force nature to select e(0) = z(0) (i.e
Z(0) = 0 ) (see Shaked and Supline, 2001). In the
case where the augmented state-vector is chosen
as £(t) = [2T(t) 27 (#)]T the initial condition of
P, of (20) would satisfy, following (11),

2p—1 _
2 YR —-Q(0) 0 el 0
P(0) = e |
0 v pl 0 —0.5v%pI

where v2R™! — Q(0) is the initial weight and
where the factor of 0.5 in —0.5y2pI is arbitrarily

chosen such the (2,2) block of P(0) is positive
definite. The above P(0) can be readily trans-
formed to account for the augmented state-vector
of £(t) = [zT(t) €T(t)]" by the pre- and post-
multiplication of the above matrices, with Y7 and

A
T, respectively, where T = , the result of

I -1
which is the initial condition of (20).

The solution of the (20) involves the simultaneous
solution of both P(t) and the filter gain L and
can not be obtained readily due to mixed terms
of the latter variables in (20). Considering, how-
ever, the monotonicity of P with respect to a free
semi-positive definite term in (20) (Hinriechsen
and Pritchard, 1998), the solution to the above
Riccati-type equation can be obtained by solving
the following Differential Linear Matrix Inequality
(DLMI) :

P+ATP4+PA+FTPF PB CT HTP
BTP I, 0 0
. ’ <0,(21)
¢y 0 —-I, 0
PH 0 0o -P

where P > 0 and with P(0) of (20) and where we
require that trace{P(r)} be minimized at each
time instant 7 € [0, T].

Recently, novel methods for solving DLMIs has
been introduced in (Shaked and Supline, 2001).
Applying the method of (Shaked and Supline,
2001), the above DLMI can be solved by dis-
cretizing the time interval [0, 7] into equally
spaced time instances resulting in the following
discretisized DLMI :

Uy PBiye  CF, HIP
BT P, —%"'1 0 0

Lk t <0, (22
Ch.k 0 &1, o0

P Hy, 0 0 —&'p

for k=0,1,..,N — 1 and where

Zsk_H — Zsk + 5(14{15]@ + Pkfik) + éﬁ'];rpkﬁk, Ak =
A(ty), Bix = Bi(ty), Cixp = Ci(ty), Hy =
H(t), and Fy, = F(t;) with {¢;, i = 0,.N —
1, ty =T, to =0} and

tiy1 —t; 2E=N"'T, i=0,..N—1. (23)

The discretized estimation problem thus becomes
one of finding, at each k € [0, N — 1], Pryq > 0
of minimum trace that satisfies (22).

The latter DLMI is initiated with the initial
condition of (20) at the instance k£ = 0 and a
solution for both, the filter gain L and Pk+1 (i.e
]31 and Ly) is sought for, under the minimum trace
requirement of PkH. The latter procedure repeats
itself by a forward iteration up to &k = N — 1,
where N is chosen (and therefore 1/€) to be large
enough to allow for a smooth solution (see also
Shaked and Supline, 2001). We summarize the
above results, for the full preview case, by the

following theorem:

Theorem 4: Consider the system of (1) with
dy(t) and Jo. Given v > 0 and € > 0, the
output-feedback tracking control problem, where
r(t) is known a priori for oll t < T (the full
preview case), possesses a solution iff there exist
Q(t) > 0, Vt € [0,T] that solves (3) such that
Q(0) < v2R™', and P(t) that solves (20) Vt €
[0,T] starting from the initial condition of (20),
where R is defined in (2). If a solution to (3) and

(20) exist we obtain the following control law:
Uof(t) = —C1(t)(t) (24)

where &(t) is obtained by solving for (16).
In the case where r(t) is measured on line, or with
preview h > 0, we note that w(t)which is not
restricted by causality constrains, will be identical
to the one in the case of the full preview. We
obtain the following;:
Corollary 4 H,, Output-feedback tracking with
fized-finite preview of r(t): In this case we obtain:
Uor(t) = —Ci[#] 1, where

d[#]+ = [A + LCo]édt + Ld[g]y + [g(t)]+dt,

[9(D]+ = Bau 4 [Bs — BaR™* DL, D13]r — [BoR™1BY

—y?B1B{ 0]+, dlg]+ =dy —~" " D21 B [0]+.
Corollary 5 H., Output-feedback tracking with
no preview of r(t): In this case [0(t)]+ = 0 and we
obtain: u,r(t) = —C1[#] ., where



Average Tracking Error

Fig. 1. Comparison between the tracking errors
obtained in the standard solution (dashed
lines) and by the new method (solid lines)
for r = sin(t), measured on line.

d[#]4 = [A + LColadt + Ly + [¢(t)]+ dt,
[9(t)]+ = B2 + [Bs — Ba R~ DL, Dy3]r.

5. EXAMPLE

We consider the system of (1) with the following
objective function:

J = limg o€ [ [|Cz =12 + 0.01u]|2 = 72| |w||dr
where there is an access to the states of the

system, where
0o 1 0 0 1
A= [71 70.4]’ F= [0 70.1]’ By = [71]

,B2:|:(1)], B3:|:(1)] and C:[—0.50.4].
and where G = 0. The case of h = 0 can be

solved using the stochastic solution of (El Ghaoui,
1995) where ry, is considered as a disturbance. The
disturbance vector wy becomes the augmented
disturbance vector @y = [wi r{]." Using the
notation of the standard problem, we define

B, = [_11 (1)], Dy = [8 _01] and Di» = [01]

We obtain a minimum of v = 2.07 for the lat-
ter solution. Using the results of Theorem 2, we
obtain Yy, = 1.06. We compared the two solu-
tions for v = 2.1 and we obtained for the stan-
dard solution the control law u(t) = K, * z(t)
where K, = [-500.65 — 53.01]. For our solution,
using Corollary 2, the resulting control law is:
u(t) = [-16.10 — 14.62]z(t), K, = 0. In Figure
1 the average tracking error (Cz(t) — r(t)), with
respect to the statistics of the multiplicative noise,
is depicted as a function of time for r = sin(1xt).
The improvement achieved by our new method,

in this frequency, is clearly visible.

6. CONCLUSIONS

In this paper we solve the problem of tracking
signals with preview in the presence of Wiener-
type stochastic parameter uncertainties in the sys-
tem state-space model. A saddle-point tracking
strategy is obtained, for the state-feedback case,
which is based on the measurement of the sys-
tem state and the previewed reference signal. The
game value depends on the reference signal and
is usually greater than zero. The infinite-horizon
state-feedback tracking solution has been readily
obtained, for a given v > 0, by solving a single
LMI. The output-feedback tracking control was
solved along the lines of the standard solution,
where the problem is re cast into an estimation
problem. The later solution was carried by ap-
plying the BRL, found for state-multiplicative
systems, to systems with reference inputs. It is
shown via the example that the tracking error is
considerably reduced, in the state-feedback case,
using a preview in comparison with an alterna-
tive stochastic design where the tracking signal is
taken as a disturbance.

7. REFERENCES

[1] V. Dragan and T. Morozan, ” Global solu-
tions to a game-theoretic Riccati equation
of stochastic control”, Jornal of Differential
Equations, vol. 138(2), pp. 328-350, 1997.

[2] D. Hinriechsen and A. J. Pritchard, ” Stocha-
sic Hy, ” STAM J. of Contr. Optimiz., vol.
36(5), pp. 1504-1538, 1998.

[3] U. Shaked and C. E. deSouza,” Continuous-
time tracking problems in an H., setting:
a game theory approach,” TEEE Trans. Au-
tomat. Contr., vol 40, pp. 841-852, 1995.

[4] A. Kojima and S. Ishijima, ” H., control
with preview compensation,” Proc. American
Control Conf. ,Albuquerque New Mexico, 4-6
June 1997, pp. 1692-1697.

[5] L. El Ghaoui, ”State-feedback control of sys-
tems with multiplicative noise via linear ma-
trix inequalities,” Systems and Control Let-
ters, vol. 24, pp. 223-228, 1995.

[6] U. Shaked, V. Suplin, ” A new bounded real
lemma representation for the continuous time
case,” Accepted for publication in IEEE AC,
2001.



