Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

WWW-BASED REMOTE CONTROL USING
TINI CARDS AND BRAZIL

J.J. Elosua, J.C. Burguillo

Departamento de Ingenieria Telemdtica.
ETSI Telecomuniacion, Universidade de Vigo.
E-86200 Vigo (Pontevedra), SPAIN
Phone/Faz: +34-986 813869 / +34-986 812116.
E-mails: jjelosua@mundo-r.com, jrial@ait.uvigo.es

Abstract: In this paper a fast, compact, cost-effective solution to build Web-based
remote con trol systems is presented. This solution has been developed using a
compact architecture given by the pow erful conbination of TINT cards (Tiny InterNet
Interface) and the Brazil platform. This infrastructure has been combined and put
into practice building a system that controls a robot and a video camera. This system
is entirely Java-based so cross-platform, security and netw ork facilities are inherited.

Keywords: Remote control, Mobile Robot, Telematics, Internet, Java.

1. INTRODUCTION

During the last years we have seen an unstoppable
expansion of the Internet. Having this in mind, in
the w orldof con trolengineering it is an added
value to provide Web-based interfaces to many
types of devices. Now ada ys mapn devices do not
ha e this interface implemented and even the suit-
abilit y of making this interface internal could be
discussed in terms of cost, security and efficiency.
Hence, it is very in teresting to hae a small, low-
cost, external component to increase the function-
ality for a wide range of control devices.

The TINI card (Loomis, 2001) matches perfectly
the previous need, this small card was designed
to give a voice on the net w ork to mawn types of
devices: from small sensors and actuators to fac-
tory automation equipment and legacy hardware.
TINI has a built-in Ja varun time en vironmert.
Java(Sun, n.dd) was not commonly used for em-
bedded systems, but today the relativ e cost of
programming rises compared with hardware costs,
so better use of programmers is needed. This
situation fits perfectly with the Ja vaphilosophy
(Roussel and Duris, 2000).

The Brazil project (Sun, n.d.a) dev eloped ly Sun

Labs started off as an HT'TP stack designed with

a very small footprint (< 100K B). It evolved
into a more general toolkit for putting URL-based
interfaces on a wide range of applications and de-

vices. Brazil has been chosen for the development

of the system because it gives an homogeneous

structure to any complex system that includes

small devices, traditional Web applications and

big meta-servers.

Nowadays WWW-based applications for remote
con trol systems are emerging in a wariety of fields
such as tele-education (Rodriguez et al., 2001),
telerobotics (Behnke and Elzer, 2001), home au-
tomation (Skrtic et al., 2001) and industrial envi-
ronments (Schmid et al., 2001).

The architecture presented in this paper presents
several adv amages compared with traditional
ones:

e micro-server: Made from the combination
of the TINI card and Br azi] instead of the
traditional PC or w orkstationto serve the
requests. This micro-server offers a gain in
mobility, space and cost.



e UPI & Java: The Brazil technology is based
on the URL programming interface (UPI).
The UPI interface provides a set of URLs
to any device available through the HTTP
protocol. The highest degree of openness is
therefore achieved because HTTP protocol is
supported by any commercial Web browser.
Beyond that, Java provides the required se-
curity to make this openness truly reliable.

e code reuse: Brazil functionality is built from
very small software pieces. Therefore, it is
really easy to reuse or reorganize those pieces
to build new applications. An example illus-
trating how to share those pieces on the Web
may be found in (DiGiorgio, n.d.).

The rest of this paper is organized as follows.
Section 2 describes the main features provided by
TINT cards. Section 3 introduces the Brazil plat-
form. Section 4 describes a feasible combination
of this infrastructure to develop and construct the
Web-based remote control system. Finally, in sec-
tion 5, conclusions and further work are discussed.

2. TINY INTERNET INTERFACE: TINI

The TINI platform is a combination of a small
but powerful chip-set and a Java programmable
runtime environment. The chip-set provides pro-
cessing, control, device-level communication and
networking capabilities. The features of the un-
derlying hardware are exposed to the software de-
veloper through a set of Java API’s (Application
Programming Interfaces).

Also, the combination of broad-based I/O capa-
bility, a TCP/IP network protocol stack, and a
Java programming environment empowers pro-
grammers to quickly create applications that pro-
vide not only local control but also global access
to TINI-based devices. This connectivity of this
TINI-based devices is therefore extended by al-
lowing interaction with remote systems and users
through standard network applications such as
Web browsers.

2.1 TINI Hardware

Although TINI does not require a specific hard-
ware design, a TINT board model 390 (TBM390) is
available. TBM390 is a compact (31.8mm X 102.9
mm) 72-pin SIMM board that allows both hard-
ware and software designers to begin prototyping
and development work without a large up-front
investment of either money or time. This board
model provides the following important features:

e Currently the DS80C390 microcontroller: is
the heart of any TINI hardware design and

Fig. 1. The TINI card

directly executes the native code portion of
the runtime environment.

e 512KB Flash ROM: stores TINI’s runtime
environment,.

e 512KB persistent SRAM (expandable to 1IMB):
contains the system data as well as the
garbage collected heap from which all Java
objects are allocated. It also stores all file
system data.

e 10Base-T Ethernet controller and Real-time
clock.

e Dual CAN! controllers, Dual 1-Wire net
interface, Dual serial port and 2-wire syn-
chronous serial port

e Exposes the microcontroller’s address and
data buses for parallel I/O expansion and
requires only a single +5V power supply.

There is a need for a socket board to provide
physical connectors to interface the TBM390 with
other equipment such as a Ethernet network, a
serial device, or a 1-Wire network.

2.2 TINI runtime environment

Providing hardware for developing embedded net-
work devices is only half the job. A large amount
of software is also required to free application
developers from having to worry about the de-
tails of creating layers of infrastructure. For this
reason a runtime environment was developed from
the beginning as an integral part of the overall
platform.

The software that comprises TINI runtime envi-
ronment can be divided into two categories: native
code executed directly by the microcontroller and
an API interpreted as bytecodes by the Java Vir-
tual Machine.

2.3 TINI applications

Here are a few of the possible applications that
can be build using this technology:

1 CAN (Controller Area Netwotk) fieldbus is widely used
in industrial automation systems



o Industrial Controls: TINT’s integrated CAN
support is instrumental in implementing fac-
tory automation equipment, network switches
and actuators.

o Web-based equipment monitoring and con-
trol: it can be used for communication with
equipment to provide remote diagnostics and
data collection for purposes such as monitor-
ing device utilization.

e Protocol Conversion: TINI-based systems
can be used to connect legacy devices to
Ethernet networks. Depending on the I/0
capabilities of the legacy system, this may
also be done by a workstation or a computer.
TINI can do the job at a fraction of the cost
and size.

o Environmental monitors: Using TINI’s built-
in support for 1-Wire networking, an applica-
tion can query sensors and report the results
to remote hosts.

3. BRAZIL

The Brazil project began as an extremely small
footprint http stack, originally designed to provide
a URL-based interface to smart cards, allowing
them to be accessed more easily from an ordinary
web browser.

Once the power of this simple Java technology-
based code was understood, it evolved into a more
general toolkit for putting URL-based interfaces
on a wide range of applications and devices.

The Brazil project promotes the functionality of
portals and content aggregators. It does this by
sitting between the content providers and the
users to offer fully personalized and customized
content pulled from a variety of independent web
sources.

3.1 Brazil advantages

This section will try to point out Brazil’s strong
points:

o Distributed-Content Web: Currently, the web
consists of browsers talking to web servers. In
Brazil’s vision, web servers will be augmented
by meta-servers, which do the content ag-
gregation and portaling. In addition there
will be micro-servers, which produce tiny
bits of content that, although not suitable
for browsers directly, can be useful in con-
junction with the meta-servers. The Brazil
framework can be used to build applications
for all three levels — web servers, for meta-
servers and for micro-servers.

Fig. 2. The Brazil platform

o Large applications achieved by combining
simple parts: Brazil toolkit’s snap-together
pieces are called Handlers 2, The sophistica-
tion of your application is really just depen-
dent on how sophisticated you are at putting
together these primitive pieces. The Brazil
toolkit was designed to make it easy to add
new little bits of functionality to an applica-
tion, combining them with all the bits that
are already there.

o Accelerated Development Cycles: The idea
was to provide a very flexible, malleable
toolkit for writing applications very quickly
through little interfaces that makes code
reuse really easy.

o More than a Web server: By using a sim-
ple interface, in conjunction with powerful,
reusable components, the Brazil technology
system is able to deliver a wide range of flex-
ible web solutions, ranging from tiny micro-
servers, to traditional web capabilities to
fully functional meta-servers that provide so-
phisticated portal and content aggregation
capabilities.

3.2 Architectural overview

Typical applications of the Brazil system combine
one or more existing components together with
custom additions, consisting of one or more im-
plementations of:

e handlers: The primary extension interface,
which allows for the custom handling of
URL’s. Just about the only thing they have
in common is their lack of dependencies on
any other packages. Some provide generic
capabilities, such as standard CGI interfaces
or template processing, others are either spe-
cial purpose, provided to demonstrate how
to write handlers, and others are skeleton
handlers, designed to be finished to provide
application specific functionality.

2 A handler is similar to a servlet in Java Web server
terminology, but is lighter in weight.



e filters: Normally once a handler generates the
content for a request, the content is delivered
to the client, and the request is finished. Al-
though this allows for a choice in the manner
in which the content is obtained, nothing can
be done to modify that content before it is
transmitted to the client. A filter is a special
type of handler, used in conjunction with the
FilterHandler that permits content obtained
from other handlers to be rewritten or filtered
before it is sent to the client.

o templates: Are classes that work in conjunc-
tion with the TemplateFilter or Template-
Handler that allow HTML/XML content to
be processed on a tag by tag basis. The sun-
labs.brazil.template. Template interface used
to define templates does not define the meth-
ods used for processing. Instead, the Tem-
plateHandler introspects all of the methods
in a template class to determine which ones
should be called when HTML tags are seen
in the input document. This is an XML like
capability that is backward compatible with
existing HTML practice.

3.3 Application development process

To use Brazil server as part of an application, one
or more handlers need to be written.

A handler is written by creating a Java class that
implements the handler interface. This consists
of only two methods, Handler.init(Server, String)
and Handler.respond(Request). The first is called
once, when the server is initialized, and the other
is called upon each HTTP request.

Multiple handlers are needed for most applica-
tions, either written specifically for the applica-
tion or in combination with some of the handlers
provided in the sunlabs.brazil.handler package.
The Server class utilizes the ChainHandler to al-
low multiple handlers to work together.

The ChainHandler is the default mechanism used
to run multiple handlers. It looks for a single con-
figuration parameter, called handlers, that con-
tains a list of tokens, each of which is the name of
another handler. For example, the following entry
in a config file:

handlers = a b ¢

a.class = Java class for handler a
b.class = Java class for handler b
c.class = Java class for handler c

Call chains of arbitrary depth can be configured
this way. The config file handlers property can
even refer to other instances of the ChainHandler,
enabling the creation of an arbitrary tree of han-
dlers.

4. REMOTE CONTROL SYSTEM

After having looked at the main components of
the remote control system’s internal skeleton, this
section will present, the complete structure and
functionality of the system developed.

The aim is to control, using a Web interface, a
robot called Khepera (K-team, n.d.), developed
by the University of Laussane, and a Sony video
camera (EVID30/31) (Sony, n.d.). Figure 3 shows
the system structure. In the next paragraphs
we detail the system components (hardware and
software) and the functionality offered.

4.1 Hardware components

During the system development, the next hard-
ware components have been used:

e Khepera Robot: it is the heart of the re-
mote control system and may be controlled
through a RS232 serial port.

e Sony Video Camera: Used to track the robot
and then send the live video streaming to the
remote users so that they could actually fol-
low the system’s evolution. This video cam-
era can also be controlled through a RS232
serial port.

e 2 TINI cards: The TINI cards are connected
to a Ethernet local network through a hub.
Also a RS232-serial connection is made be-
tween one TINI and the Khepera, and be-
tween the other TINI and the video camera.
This is the cornerstone that enables the con-
trol of the system through WWW.

e Studio MP10: The Studio MP10 (Pinnacle,
n.d.) developed by Pinnacle Systems it was
designed for capturing real-time audio and
video. This device captures the video stream-
ing produced by the video camera and de-
ploys it into a PC.

e PC: it has two main functions: it acts as
a portal for the users of the system, that
is, all requests generated by a user will be
addressed to this PC. The other function of
the PC is to send the live video streaming to
remote users using the RTP protocol (Real-
Time Protocol) (Tetf, n.d.) designed for the
transmission of real-time data.

4.2 Software requirements

The following software has been employed in order
to develop the application:

e Brazil: The Brazil server runs on both TINI
cards and also on the PC acting as the portal
for the application.



ROBOT

AMOTI OHAIA SHINW §

STUDIO MP10

SONY
EVI-D30

VIDEO FLOW

- SERIAL PORT

:
:
g
]

~ RESTRICTED HTTP
>
SYSTEM'S PORTAL

= AND DATABASE
ﬁ d
<
i =
(]
o
INTERNET
2 2
|~ ~
< <
3 a 3 a 3
[] []
J <
PROJECT PROJECT DATABASE
CONTROLLER VIEWER ADMINISTRATOR
> 4 Ll

Fig. 3. System’s structure

e HypersonicSQL: A Java-Based SQL Database
was included for maintenance and to autho-
rize users of the application. This Database
is accessed through the portal also.

Java Communications API (Sun, n.d.c): This
software is required whenever there is a need
to develop an application that includes port’s
communications.

Java Media Framework API (Sun, n.d.b):
This API was used to solve the video trans-
mission issue.

4.3 Functionality

The system’s functionality can be divided into
three interrelated parts:

o Remote Control: Providing a remote control
access to both the robot and the video cam-
era through WWW to the users is the heart
of our system.

Video Image: The transmission and reception
of the video image broadcasted by the Sony
video camera allows to see what the robot is
doing.

Database Control: The database administra-
tion is also done through the WWW.

The system provides a basic security policy dis-
tinguishing three types of users:

e Database administrator: The only one who
has access to the Database Control part of
the system’s functionality. It does this by
using a Java Applet that communicates with
the database through the portal.

o Project viewer: It is the user that has the
strongest restricted access to the system’s
functionality. It can only access the Video
Image part. It does this by either using
a Java Applet that communicates with the
portal through the RTP protocol or by using
one RTP connection provided in the JMF
package.

Project controller: This user has access to the
heart of the project, that is, Remote Control
and Video Image. It does this by using two
Java Applets, one to control the robot and
the video camera, and the other to show the
live video streaming.

The remote control and database control part of
the system’s functionality is conquered by three
running Brazil servers, one on each TINI card
and the last one in the portal. Table 1 shows the
handlers used by the three servers.

The remaining functionality is achieved through a
Java Applet that uses the JMF package and the
RTP protocol to show the live video stream.

5. CONCLUSIONS AND FURTHER WORK

Throughout this paper a entirely Java-based, fast,
compact and cost-effective solution to build Web-
based remote control systems has been presented.

It is important to build micro-servers that can fit
almost anywhere and allow the serviced devices
to focus on being effective and have excellent
performance without worrying about who is the
controlling user, or where this user is physically
located.



SYSTEM’S HANDLERS

HANDLERS URL REMARKS
RestrictClientHandler /khepera/ Allows only the portal to access this server
TINII KheperaHandler /khepera/ Does the real communication with Khepera
FileHandler - Provides certain types of files to remote users
RestrictClientHandler /sony/ Allows only the portal to access this server
TINI2 SonyHandler /sony/ Does the real communication with the video camera
FileHandler - Provides certain types of files to remote users
BasicAuthHandler /database/ Performs the authentication for the database
dbcontrolHandler /database/html/ Sends the database Applet in a HTML document
AddAuthUserHandler /database/control Dynamically incorporates new users to the system
/add_user/
SqlHandler /database/control/ Controls the Java-based SQL database
BasicAuthHandler /project/ Performs the authentication for the project
controlHandler /project/html/ Sends the control Applet in a HTML document
PORTAL viewerHandler /project/view/ Sends the view Applet in a HTML document
historySqlHandler /project/control/ Dynamically adds the users’ commands to the DB
. /project/control Redirects the users’ commands
MultiProxyHandler /khepera/ to the Khepera TINI card
. /project/control Redirects the users’ commands
MultiProxyHandler /sony/ to the Sony TINI card
FileHandler - Provides certain types of files to remote users
NotFoundHandler - Sends a special Not Found HTML page

Table 1. Handlers implemented in the system’s Brazil servers

Internet is not the right channel for building real-
time systems because of its internal variability in
times. Further work could aim to design a real-
time based system using another communication
channel. In this sense, the new Java real-time
specification (Bollella and Gosling, 2000) will help
to overcome the characteristic Java limitations.

Future work to adapt the TINI cards to wireless
communications (Borkes and Syrisko, 2001) will
be an improvement in this type of remote con-
trolled systems, because it allows a new degree of
freedom.

6. ACKNOWLEDGEMENTS

The authors would like to thank Denis Bureau
(Groupe ESIEE, Paris) and specially Jean-Michel
Douin (CNAM, Paris) for the excellent and con-
tinuous support throughout the development of
the Remote Control System.

7. REFERENCES

Behnke, R. and P.F. Elzer (2001). A user interface
for telecontrol of a robot over the internet.
Telematics Applications in automation and
robotics 1, 547-552.

Bollella, G. and J. Gosling (2000). The real-
time specification for java. IEEE Journal of
Robotics and and Automation 7(4), 535-539.

Borkes, J. and H. Syrisko (2001). Trends in wire-
less. Telematics Applications in automation
and robotics 1, 535-540.

DiGiorgio, Rinaldo (n.d.). Brazil Handlers Web
site. http://www.brazilhandlers.com:9090.

Ietf (n.d.). RTP Request For Comments.
http://www.ietf.org/rfc/rfc1889.txt.
K-team (n.d.). Khepera Robot Web site.

http://www.k-team.com/robots/khepera/.

Loomis, D. (2001). The TINI Specification and
Dewelopers Guide. 1st ed.. Addison-Wesley.

Pinnacle (n.d.). Studio MP10 documentation.
http://www.dominadm.com/ftp/Manuali/
Mpl0_eng.pdf.

Rodriguez, F., A. Khamis and M. Salichs (2001).
A remote laboratory for teaching mobile
robots. Telematics Applications in automa-
tion and robotics 1, 307-313.

Roussel, G. and E. Duris (2000). Java et Internet
Concepts et Programmation. 1st ed.. Vuibert.

Schmid, D., B. Maiile and I. Roth (2001). Perfor-
mance teletests for industrial robots by the
internet. Telematics Applications in automa-
tion and robotics 1, 495-499.

Skrtic, S., K. Werthschulte and F. Schneider
(2001). Tele-supervision and tele-control of
smart homes. Telematics Applications in au-
tomation and robotics 1, 547-552.

Sony (n.d.). EVIDS30/31 Documen-
tation. http://rock2000.com/pdf/evid30.pdf
and http://www.vision.auc.dk/~tbm/Sony/
EVID30.pdf.

Sun (n.d.a). Brazil Web site From Sun Labs.
http://www.sun.com /research/brazil/.

Sun (n.d.b). Java Communications APL
http://www .java.sun.com/products/javacomm/.
Sun (n.d.c). Java Media Framework APL

http://www .java.sun.com/products/java-
media/jmf/2.1.1/documentation.html.

Sun (n.d.d). Java Web site - useful for updated
documentation. http://java.sun.com.



