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Abstract: The aim of this w orkis to model and monitor the influence of abiotic
(en vironmertal) effects on a population system of several species living in the same
habitat. The dynamics of the population system will described by the classical Lotka-
V olterraequations. It is also supposed that abiotic effects cause changes in given
(input) parameters which are observed indirectly by the biomass of certain indicator
species. Then, applying system inv ersion, for the obtained control system with output,
the unknown input will be recovered in order to monitor the environmental effects on

the population system..
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1. INTRODUCTION

In this paper, as a starting point, the classical
Lotka-Volterra model of several species is comn-
sidered. Certain coefficients of this model are
supposed to be influenced by abiotic effects of
the environment such as pollution, meteorological
changes, etc. These time-dependent coefficients
are regarded as inputs (hidden parameters) of a
control system. It is assumed that the biomass
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of certain populations (indicator species) of the
community is observed. In order to recover or
estimate these hidden parameters out of the obser-
vation, the system inversion, preserted in (Szigeti
et al., 2002) will be applied.

Considering n species living in the same habitat,
suppose that the biomass at the i-th species is
described by x;, a smooth function of time, its
Malthus parameter is €;, and the effect of the j-th
species on the i-th one is proportional to z;z; with
a coefficient I';;. The dynamics of the population
system is described by the equations



n
x'i:xi € — E I‘ijx]— y (i:1,2,...,n).
j=1

For vectors a,b € R" and matrices A, B € R**".
Introduce the operations

axb=(aiby,... anbn)T,
ax A= (a; a”)” 1
ax A= (amaJ),] 1)
Ax B = (a;bij)i ;-

Then with € = (1, €2, . .. 7€n)T and [' = (Fij)?,jzb

the above system can be written in the form

T=€exx—xx*lx.

The study of basic properties of this model, in-
cluding stability goes back to Volterra, see, e.g.,
(Scudo and Ziegler, 1978), also (Yodzis, 1989).

For the description of the control model, suppose
that there are m < n environmental factors
having an effect on the population system. [
of them, wi,us,...,ur control certain Malthus
parameters in the form

1
i=1

where for the vectors n; = (ni,ms,...,n%) i =
1,2,...,I, n; *n; = 0 holds whenever i # j,
(each population is effected at most by one factor).
Similarly, suppose that there are J = m—1I further
environmental factors, (vi,ve,...,vs) having an
effect on the coeflicients of interaction in the form

J
Fik + Z ngvj (t)a
j=1

where for the matrices G; = (Gfk)?’k:l, Jj=
L,2,...,J, GxGI=0 holds whenever @ # j,
and Ty, = 0 implies G, = 0 for all j =
1,2,...,J.

From biological point of view it is also reasonable
to require that, for all j =1,2,...,J, Gy, #0
implies sz # 0. Now, in terms of the above

notation, the corresponding control system can be
rewritten in the form

1 J
= e*m—m*l"m—}—z N * T+ Zvja:*Gja:. (1)

i=1 j=1

Assume now, in order to monitor the environ-
mental effects, that the biomass of n species is

observed. Then with distinct vectors ¢y, ...
R"™, the observations are given by

»Cm €

_ T _ T _.T
Y1 = &, Y2 = C &, .- ., Ym = Cp L,
or equivalently,
y=Cz

defining C' = (c1|cal ... |em)T

Remark 1. If, by technical convenience, on mea-
suring the biomass, no distinction is made be-
tween certain species, then vectors c¢i,ca, ..., Cn,
may have several unit coordinates and the condi-
tion and the condition ¢; * ¢; = 0 holds whenever

i #j.

The abiotic effects of the environment change
inputs wi,uo,...,ur,v1,v2,...,v5, however, di-
rectly, only the outputs yi,v2,...,Ym, are ob-
served. Hence, in order to recover the influenced
inputs, input observation system inversion is re-
quired. Both were considered in (Hou and Pat-
ton, 1998) and (Szigeti et al., 2002).

Left invertibility of a linear systems and input ob-
servability are equivalent for inputs which are van-
ishing for 0 < t < to. Invertibility of input affine
multivariable nonlinear systems were considered,
for example, in (Hirschorn, 1979), (Fliess, 1986),
(Isidori, 1995).

2. INVERSION ALGORITHM

Let us consider the inversion of analytic system

) + Z gi(@)ui, (2)
y(z) = h(z) (3)

with z € R*, y,u € R™.

For the inversion the construction of Isidori will be
followed without the hypothesis that the matrix

Ay(2) = (Lg, L™ " hy) (4)

is invertible, where r1 = (r{, r3,..., rl) is the
relative degree in the invertible case, how they
are the orders of the derivative of h; when first
time control appear. We can suppose, that if
rankA;(x) = di < m, then the first d; rows are
linearly independent. Then there exists a matrix

Fy(z) € Rim=d)@m - of rank m — dy, such that

Fi(z)Ai(z) =0, (5)
and

Fi(2) = (F}) = (F5( ..

ij LgkaTl_lhl(x)"'))a



where filj(akl) are polynomials.

Considering derivatives of order k < r},

g = L*hi(x), k=0,1,...,r' =1 (6)

it can be proven that ngLfkflhi(:U) =0.

However, for ri, using the vectorial notation

y(m) — (y§T1)7 yéTZ), . yT(:;m))T

’

Ly™h(x) = (Ly" ha(w), ..., L™ h(2))"

can be proven by induction, using the hypothesis
that

y(r1) = Lleh + Al (CU)U (7)

Then, (3) and (5) imply that

Fy(2)(y"™) = L™ b)) = 0. (8)

Now the output relation can be redefined taking
the first d; components of the original output, the
rest of the components are defined by (8). Then
the objects

A2(Iay(rl))7r2ad2a F2(:L‘7y(rl))7

are defined in a way analogous to the first step.

Clearly one has

1 2

— 1 _ .2 1 _ .2
TL =Ty, Ty =Ty, ..., ’I‘dl—le.

Case 1. d; = da> < m. Then system (1) is obviously
not invertible.

Case 2. d; < dy = m. Then the algorithm stops.
From the first d; of (5) and the equation

T2

T ri4ro—
> (1) <R -

q=0

LT h(x)) — As(e,y)u =0,

where q= ((11>Q2> B 7Qm)T

(3)-()()-(2)

q @)’ \a)’  \am))’

u can be uniquely recovered, finishing the inver-
sion algorithm.

Case 3. d; < d> < m. Then we proceed until the
algorithm stops with cases (1) or (2). In case (2),

an equation of full rank, similar to (6) is obtained.
For more details of the algorithm see (Szigeti et
al., 2002).

If algorithm stops at the i** step, then the full
rank condition for A;(x,y,y,...) = 0, can be
replaced by a differential-algebraic condition of
polynomial form

Pz(uauayay7) :07

using Diop’s state elimination, see (Diop, 1991).
The specific algebraic structure of systems (1)
is very useful, in the computation of the gen-
eral algorithm, however it is tedious enough to
describe in a general way. Invertibility, or more
specifically, that certain input formally appears in
an output, after a given number of derivatives, can
be characterized by the diagraph of the food web.
Hence, it seems that further research would be
interesting to introduce the structural invertibility
of a control systems, and to characterize by graph
methods.

Conditions on n; xn; and G* * GY are structural
ones.

3. EXAMPLE

As an illustration a five-species system is consid-
ered in which, for the sake of simplicity intra-
specific competitions are excluded. The parame-
ter [';; figuring in the model are suppose to be
positive, and two types of interaction occur.

There are five predator-pray pairs: (2,1), (3,1),
(3,2), (4,3) and (5,4), and there is amensalism
(a one-way negative effect) between species 5
and 3. The first two Malthus parameters are
affected by environmental control factors and,
in an structured way, interaction parameters are
influenced by two abiotic control parameters. The
biomass of the first three species is observed.
Under these conditions the control system reads
as follows:

7y =my (€1 — Tiawy — Tizws) +

mu — (Crazs + Tizzs)vr),

€2 + Lo1x1 — Pogz) +

not + (Lo1zy — Lazzs)vr),

€3 + 31wy + Ugowe — L34y — U3s25) +
nsu + (Fz121 + Caozz)v1),

€1+ Lagwz — Lasa5) — Taszasvo,

€5 + F54$4) + Dsaxaxs0s. (9)

T
33'2 = T2
T2
T3 =3
Zs3

37'4:1‘4

P~ o~ o~ o~ o~ o~ o~ o~

33'5 =I5

Y1 =1, Y2 = T2, Y3 = &3,



From the output derivatives, the equations

Y1 =z1(e1 — Lraxe — Ciza3) +
x1(mu — (L1202 + Tizxs)vr),
Yo = x2(€2 + Ioywy — Tozxs) +
(mou + (o1 — Tagws)vy),
Yz = w3(e3 + La1zy + Uspzy — Izqzq — T3525) +
w3(nzu + (Uz121 + Isaa)v1) (10)

are obtained.

The resolubility of this equations in the indetermi-
nates x4, u,v1, Or T5,u, vy, Or ['sqxqy — 3525, u, v1,
is necessary to the invertibility of the system.
However, each of those is equivalent to the fol-
lowing determinant condition

0 mzy —z1(l22e + Tizxs)
Det| 0 T2T2 iL’z(F21£U1 - F23£IZ'3) 75 O,
Zr3 13T3 :I,‘3(F31$1 + F32:L‘2)

that is,
212223 (MIT2121 + maloxe + (2l13 — mTes)xs3)
is different of zero.

That, with the other necessary condition, that
Dysxqxs # 0 or Tsgxgxs # 0, equivalently,
( T2, +T%,)zax5 #0, already is sufficient to the
invertibility, to: that is

(Tis + Dawrwowswaws (m Loy +
Neli2zs + (m2lis — mlas)as) #0. (11)

([%; +T%,)z4z5 # 0, means, that control v, there
exists effectively.

The condition 0 < z1,< @2,...,x5 imply that
the product is not zero. The positiveness means
that an ecosystem of 5 (and non less), species is
modelled. The unique real condition is

mUa1y1 + n2l12y2 + (213 — mIDas)ys) # 0,
which automatically holds for certain families of
parameters, for example, if
n2l21 > 0,122 > 0,723 —ml'ag > 0.

are fulfilled. Let us define new outputs by mixing

of (1),(2),(3):

MZ2yi — MT1Y2 = T1T2(N2€1 — M€ —
(mTa1a1 + m2li2xe + (213 — i Tag)as) —
(mTo121 + neli2xe + melis — mas)s),

N33y — MT1Ys = v123(N3€1 — N1€3 —
(mIs121 + (M2 + n3li2)ze +n3lis)xs) —
(mIs121 + (T2 +n3)Ci2)2e + n3l13)ma3)u) —
(mIs121 + (a2 + (m3l12)ze +n3li3)ws)vr +
(mI3awq +mIs5)25).

From (1) and (2) define the mixing of the last two
output relations:

(m2z2yy — mz1ya)(MIs121 + (M Ts2 + (M3012) 20
+n3013)w3) w3 — (3w3ys — marys)(mlaizr +
(M2l12w2 + (M2l13 — mTa3)w3)w2 = 217073

(m2€1 —mea(msizys + (mT32 +nsli2zs +
(m3l13)x3)3) + (mes — mzer)m 2wy + m2li2w2
+(m2l13 —mIlaz)zs) — (mTaiwy + n2lams +
(mUsaza + mTss25) (M2l — (mL'2323)).

Denoting by g(z1,z2,23) the fraction

mIs1z1 + (mTs2 + n3Ti2)2 + n3lis)es
mUorz1 + neloze + (2l — mTag)zs

the following relation

[34xy + D3bas = y—l(na — gz, x2,23)) +
UiES

Y2 U3 1€3 — T)3€1
_Q(ZL'17£L'275173)___'_,,7 d
T €3 m

meln_ﬂq(xl,m,xg). (12)
1

+

is obtained

The last equation is an equation for the combina-
tion I'sdx4 +'35z5 in terms of the states x1, z2, T3
and the output derivatives y1, 2, zys3, or, in terms
of the outputs and their derivatives (all sates
T1, T2, x3 can be replaced by y1,y2,ys. Hence, by
differentiation of (12) in the expression I'sdiy +
3525 inputs w, vy, vy will appear, obtaining the
third equation, together with arbitrary two of
(10) , to invert system (9), under the invertibility
condition, given in (11).

The first 3 states are directly observed, while x4,
or, x5, or I'sdx, + I'sdxs can be computed from
the last mixed output relation. One state can not
be computed simultaneously from the observed
outputs, in general a state observer is required for
one state variable.

4. CONCLUSIONS

Certain population communities influenced by
abiotic effects of the environment were modelled



in terms of the classical Lotka-Volterra model. By
considering the changes of the model parameters
as inputs, and the observation of the biomass
of the indicator species as outputs, an algebraic
control system with output was obtained as the
mathematical description of the biological prob-
lem. Then, powerful nonlinear technics, as sys-
tem inversion was applied in order to recover
the changing parameters representing the abiotic
effects .

The applied inversion method, in spite, that
the algorithm of the left inversion, in general
is not wunique, always works with polynomi-
als as a consequence that the mixing matrices
Fi(x),F>(x,y,y,...) are polynomials of the Lie
derivatives ngLfTi_lhi and ones of their prod-
ucts, and the output derivatives, and that the the
original system is algebraic. Therefore, the algo-
rithm can be implemented by a symbolic compu-
tational package such as MAPLE, MATHEMAT-
ICA, etc.

The present paper has been aimed at a method-
ological development of population system moni-
toring of the authors is make simulations results
within a project based on the data of fish popu-
lations of the Bolsena lake in Italy, which will be
published elsewhere.
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