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Abstract: The static output feedback (SOF) stabilization problem for linear SIMO or
MISO discrete-time systems is presented and characterized in terms of the properties
of positiv edefinite T oeplitzmatrices. A global minimization problem in a compact
sets is introduced whose solution, if any, guarantees closed-loop stabilit y and the
fulfillment of an upper bound to a suitable closed loop performance.

1. INTRODUCTION

The static output feedback stabilization problem
is one of the most known and still open issues in
systems and control, see [1] for a recen tsurvey.
Here we deal with a discrete-time linear system

z(k + 1) = Az(k) + Bu(k) (1)
y(k) = Cx(k) (2)

where z € IR", u € IR™, y € IRP are the state,
input and output vectors, respectively, and A, B,
C are matrices with constant real coefficients and
appropriate dimensions.

The static output feedback stabilization problem
for systenfl)-(2) consists in finding, if possible,
a static control la w described ly equations of the
form

u(k) = Fy(k) (3)

such that the closed-loop system is asymptoti-
cally stable, i.e. the matrix A + BFC has all its
eigen ulues with modulus less than one. If such
an output feedback does exist, w esay that the
system (1)-(2) is output stabilizable and that F'is a
solution of the problem. We make the assumptions
that the system is observable and that C' has full
row rank. In particular, it is possible to define the
projection matrix

V=I-c'(cc)'c,
whose role will be clear in the sequel.

In this paper w eaim at characterizing the SOF
problem as a constrained LMI problem and, at the
same time, we propose an algorithm for MISO sys-
tems based on the properties of positive Toeplitz
matrices.

The paper is organized as follows. In Section 2
w e give some preliminary results, namely tw o
necessary and sufficient conditions for the solv-
abilit y of the SOF stabilization problem for sys-



tem (1)-(2). In Section 3 we discuss the relations
between positive definite Toeplitz matrices, the
Yule Walker equations and the SOF stabilization
problem. In Section 4 we provide a conceptual
algorithm for the solution of the SOF problem
with performance. Finally, Section 5 contains some
concluding remarks.

2. PRELIMINARY RESULTS

In this section some preliminary and general re-
sults on the SOF problem for discrete-time sys-
tems are collected. The first result is the discrete-
time counterpart of the results in [2], [3] and
gives a necessary and sufficient condition for SOF
stabilizability.

Theorem 1. The system (1)-(2) is output feed-
back stabilizable if and only if there exists a sym-
metric positive semi-definite matrix P € IR™*"
and a matrix G € IR™*" such that

P=A'PA+C'C+G'G
—~ A'PB(I+B'PB)"'B'PA (4)
0=V (P - A'PAV (5)

Proof. If F is a stabilizig gain, then take the
unique positive definite solution of the Lyapunov
equation

P=(A+BFC)P(A+BFC)+C'C+C'F'FC

The thesis follows by recognizing that the same
solution P solves (4) with

G = (I +B'PB)'*FC + (I + B PB)"'/?B'PA

Notice that, in view of the assumptions, there is
no loss of gemnerality in considering ounly strictly
positive definite solutions P of (4).

Vice-versa, if P and G satisfy (4), (5), then take
an orthogonal matrix 7" such that

T'GV = (I + B’ PB)"'/?B'PAV
and define

F=(I+B'PB)~*1T'GC'(CC")™
—(I+B'PB) 'B'PAC'(CC") !
Then, it is a fact of cumbersome computation to
show that P satisfies
P=(A+BFC)P(A+BFC)+C'C+C'F'FC

so that the stability of A + BF'C comes from the
well known Lyapunov Lemma. [

The proof of the previous result allows us to
provide the parametrization of all stabilizing SOF
gains as follows.

Corollary 2.1. Consider the system (1)-(2). The
family of all output feedback gains F' such that
the matrix A + BFC is stable is given by

F=(I+B'PB)~Y?1'GC'(CC’)~t
- (I+B'PB)"'B'PAC'(CC")™!

where P = P’ > 0 and G solve (4) and (5) and T'
is any orthogonal matrix satisfying

T'GV = (I + B PB)"'/?B'PAV

It is worth pointing out that it is possible to
remove the unknown G in Theorem 1 by replacing
the Riccati equality with a Riccati inequality. This
fact is formalized in the following result.

Theorem 2. The system (1)-(2) is output feed-
back stabilizable if and only if there exists a sym-
metric positive semi-definite matrix P € IR™*"
such that

P>A'PA+C'C—A'PB(I+B'PB) 'B'PA®)
0=V(P—-APAYV (7)

Proof. If F is a stabilizing gain, then the result
follows from the proof of Theorem 1. Vice-versa,
assume that P > 0 satisfies (6), (7). If the rank of
Sp=P—-A'PA+C'C-A'PB(I+B'PB)"'B'PA
is not greater than m, then the proof follows again
from Theorem 1 by taking G € IR™*" such that
G'G = Sp. Otherwise, let B = [B 0] where the
zero elements are such that the number of columns
m of B equals the rank of S. Notice that replacing
B with B does not affect inequality (6). Now,
taking G € IR™*" such that G'G = Sp, it is
possible to select

F=(I+BPB™*1'GC'(CcC)™!
—(I+B'PB)'B'PAC'(CC") !
where 7" is any orthogonal matrix satisfying
T'GV = (I + B'PB)"Y/?B'PAV.
As proved in Theorem 1, such a gain F is such that
A+ BFC is stable. Letting F' denote the first m

rows of F', the conclusion is drawn that A + BFC
is stable as well, so concluding the proof. ]

Interestingly, the inequality (6) can be cast as an
LMI formulation in the unknown X = P~! as
follows



X XA XcC
0< |AX X+BB' 0 (8)
cCX 0 I

Hence, in principle, the SOF problem is an LMI
one (equations (8) and (7)) along with the nonlin-
ear coupling condition PX = I.

The main problem concerning the search of a
feasible solution P generating a stabilizing gain F’
is that such a solution can be, generally speaking,
arbitrarily large (in some norm to be defined).
However, P can be given a system-theoretical
interpretation in terms of a closed-loop norm that
one is interested in keeping less than a prescribed
value for better performance. To see this fact,
consider the system

z(t + 1) = Az(t) + Bu(t) + Bw(t) 9)

y(t) = Cu(t) (10)
2(t) = [ﬂ (11)

where w is the disturbance. Assume that one
wants to find a SOF gain F' such that the H,
norm ||T,y]||2, of the closed loop system, with
disturbance input w and performance output z
is less than a prescribed positive value. It is easy
to see that

|T2ll3 = trace(B'PB)
where P satisfies
P=(A+BFC)P(A+BFC)+C'C+C'F'FC.
Theorem 3. Consider the system (9)-(11). There
exists F' such that A + BFC is stable and
[|IT,w|l2 < v if and only if there exists a symmetric

positive semi-definite matrix P € IR™ ™ and a
matrix G € IR™*™ such that

P> APA+CC

—~A'PB(I + B'PB)"'B'PA (12)
0=V(P—-APAV (13)
trace(B'PB) < 4~ (14)

3. TOEPLITZ MATRICES AND
YULE-WALKER EQUATIONS

We are most interested in the constraint (5),
which can be exploited in order to give more
structure to the problem. To do this, we confine
the attention to single output systems and, for
simplicity, we make reference to the observability
canonical form, i.e.

00---0 —ay

10"'0—(1/”,1
A= (15)

00--0 —ay

00---1 —a]
C=[00---01]. (16)

It is very easy to recognize that, thanks to the
particular structure of A and C, the set of n x n
positive definite matrices satisfying (5) is just the
set of n X n positive definite Toeplitz matrices.
For instance, in the case n = 3, the constrained
inherited from (5) on P = {P;;} are
Piy = Pas = P33, Pia = Pag

so that

Py Py Py

P=| Py P Py

Pi3 Pis Py
The Toeplitz matrices are fully characterized by
the first row. The question now arise on the con-
dition under which a Toeplitz matrix is positive
definite. This problem arises in several topics of
signal processing, time series analysis and image
processing and significant efforts have been spent
to develop efficient algorithms for the solution of
positive definite Toeplitz equations. In prediction
theory, this efforts brought to the celebrated Yule
Walker equations. Specifically, if P(n) = {P;;} is
an invertible Toeplitz matrix of dimension n, then
it is possible to find a solution of the linear equa-
tions (henceforth referred to as YW equations)

P, Py - Py aq Py
Py Py - Pipoo a2 Pi3
. . . . . +1 . =0.

Py 1 Pipa-- P Ap—1 Py,
The YW equations define the coefficients «; of
a polynomial, whose stability property is related
to the positive definiteness of the Toeplitz matrix

P. The proof of the following result easily derives
from [4].

Theorem 4. A Toeplitz matrix P(n) = {P;;} of
dimension 7, whose coefficients satisfy the YW
equations, is positive definite if and only if the
polynomial

p(z)=z2""1+ 2" P+t a, 0z 4, (17)

is Schur. ]

Proof. First of all, note that an invertible solution
P(n) of the YW equations also satisfies the matrix
equation

P(n—1)=A'"P(n—1)A + v(P(n))e}e; (18)



where A is the companion matrix

—a; 10---0
—ay 01---0
A=| ¢t (19)
—y 200 -1
—a, 100---0
Y(P(n) =P -
Py,
_, | D13
[Py Pig -+ Py | P(n—1) : (20)
Pln

and e; is the first column of the n — 1 dimensional
identity matrix.

Suppose now that P(n) is a positive solution
of the YW equations, i.e. a positive solution of
the Lyapunov-like equation (18). From Lyapunov
Lemma and the observability of the pair (4, e}) it
follows that A is stable, i.e. the polynomial p(2)
is Schur.

Conversely, assume that p(z) is Schur. Moreover,
note that any solution P(n) of equation (18) is
such that P(n—1) is Toeplitz and positive definite,
by stability of A. Now, fix a positive coefficient
and consider the Lyapunov equation

Pn—1)=A'"P(n-1)A+ 7€ee;

and find the unique positive definite solution
P(n —1). According to the YW equations, take

aq

a2

Pip=—[Piypy Piyy - Pr1]

Un—1

and note that, with this selection of Py,,, v(P(n)) =
7. Hence, P(n) is a positive definite solution of the
YW equations. [

The theorem above establishes a bijective cor-
respondence between the set of positive n x n
matrices satisfying the constraint (5) and the set
of stable Schur polynomials of degree n — 1. Inter-
estingly, the inverse of P(n) is the Hermite matrix
associated with the polynomial

m(z) = 2p(2)

Precisely,

where [ is a positive scalar. The Bezoutian
B(z,2z*) and the Hermitian matrix P~! are re-
lated by the property that w(z) is positive defi-
nite if and only if P > 0, which, as easily seen,
coincides with the result given in Theorem 4, see
also [5]. This correspondence and further details
on generalized Bezoutians can be found in [6].

Remark 3.1. Notice that in the YW equations
there are n — 1 parameters of the polynomial p(z)
and n parameter of the Toeplitz matrix P(n). If
the coeflicients «; are given and P(n) is a solution
of the YW equations, then it is easy to see that
also 0P(n) is solution, for any scalar ¢. Hence
P(n) is well defined up to a generic constant real
number. ]

If \ is an eigenvalue of A (root of p(z)), and
the corresponding eigenvector, then from (18) it
follows

(L= AP)e'P(n — D = a34(P(n))  (21)

where 7 is the first entry of the vector z. Notice
that, thanks to the very structure of A, z; can-
not be zero. Notice also that the two conditions
v(P(n)) > 0 and P(n — 1) > 0 are necessary and
sufficient for P(n) > 0. Now, assume that

el < P(n) < kI (22)

From (21) we have

(1—A]P) = 7;}](7(113_(”1))):6 > ko

Moreover,

I = ()\ + 041)371

Tit1 = Ax; + iy, 0= 2,3, — 2.

Hence, if r is an upper bound for a generic
coefficient of a Schur polynomial, it follows that

ot > [ni(l + ir)?

T'x .
=0

-1

so that the maximum modulus root of the poly-
nomial p(z) satisfies

n—2

|Amaz| < SM1 =1 lZ(l +Z"I‘)2

=0

(23)

Eol e




An upper bound for the coefficients of a n — 1-
order Schur polynomial is easily verified to be

r=max<n;1> (24)

i

A different way to work out a stability margin
for a discrete-time system is to resort to the
results of [7] starting from the equation (18), seen
as a Lyapunov equation once the positive scalar
v(P(n)) is given. Hence, from [7] it follows

V(P(n))?
Amaz| < 1= 35—
so that
€2
|Amaw| < SMZ =1- W (25)

Finally, it is possible to define the stability margin

The following result summarizes the arguments
discussed so far.

Theorem 5. Consider the Schur polynomial p(z)
and let P(n) be a positive definite solution of the
YW equations. Then, the maximum modulus root
of the polynomial is bounded by SM, where SM
is given by (26).

4. ALGORITHM FOR MISO SYSTEMS

The considerations in the previous sections can
be used to devise a constructive algorithm for the
computation of a stabilizing static output feed-
back (if any). Also, the closed-loop performance
will be taken into account, in the sense that a
positive number k is pre-selected which is an up-
per bound of the norm of P which has to satisfies
(7). Recall that this bound can be interpreted,
at the light of the result in Theorem 3, as an
upper bound of the closed-loop norm attained by
a stabilizing static output feedback control law.
We refer to this problem as the SOF problem with
closed-loop performance degree k.

The algorithm makes use of the following two sets

S1= (_SM7 SM):

- 21,24 & 4 0
Sy ={(a,b) € R | 2° + SMz—l— SYE
and of the number k£ whose meaning has been
defined above.

is Schur}

The algorithm is based on the choice of n scalar
n—2
parameters z% to 2%, belonging to S; xS, 2 X IR*,
-1

if nis even and to S, 2 x R*, if n is odd. Notice
that the set S» is indeed a triangle. The rationale
underlying the choice is as follows. With the
numbers x1, Lo, - -+, Tp_1 it is possible to work out
an—1 order polynomial p(z) with zeros belonging
to the disk of radius SM. Once this polynomial is
found, one can solve the YW equations so as to
find a positive definite matrix P(n) with norm
equal to one (recall Remark (3.1)). Then, it is
possible to select the last coefficient z,, < k so
that P = x,P(n) has norm less than k. Notice
that P still solves the YW equations (again recall
Remark (3.1)). Of course, in general, P does not
solve (6), so that a global minimization procedure
can be defined. To this end, consider the vector

x=(x1, T2 -+, Tp_1)

and the set

E=51x55 x[0, k]
with v = ”T_2 if nis even and v = nT_l if n is odd.
Now, the problem consists in solving

min Apaz (—Sp)

z€EE
where
Sp=P-A'"PA+C'C—-A'PB(I+B'PB) 'B'PA

Notice that the searching set = is compact. Once
the above (global) minimum is achieved there
are two possibilities. If this minimum is non-
positive then the algorithm terminates, i.e. the
numbers z7 to ) of the minimum argument of
the objective function can be used to construct a
matrix P = P(n) > 0 such that conditions (4)
and (5) hold. From this matrix P it is possible to
construct a stabilizing feedback. If this minimum
is positive then the SOF problem with closed-loop
performance degree k does not have a solution. Of
course, it is well possible that the problem has a
solution with a larger value of k.

5. CONCLUSIONS

The SOF stabilization problem for linear discrete-
time systems has been discussed. It is shown that
the problem can be given a characterization in
terms of two LMIs with a bilinear constraint. In
the case of SIMO or MISO systems, it is also
shown that there is a connection between the
solvability of the SOF stabilization problem, the
positive definite Toeplitz matrices, and the Yule
Walker equations. Finally, using these connec-
tions, an algorithm to solve the SOF stabilization
problem with performance has been given.



Further studies are in progress to extend the re-
sults in Section 3 to MIMO systems, and to write
explicit algorithms solving the (global) optimiza-
tion problem disscussed in Section 4.
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