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Abstract: In this paper a Lyapunov technique is presented for the synthesis of controllers
characterised by control signals that, for construction simplicity and/or in order to attain a
better efficiency, may only assume a finite number of values. In particular, a design
technique of a control law with prescribed control levels for a class of continuous-time
SISO uncertain nonlinear systems is provided, which guarantees the tracking of a given
reference trgjectory, with a prescribed maximum error norm, a prescribed rate of
convergence and a low switching frequency. Copyright © 2002 FAC
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1. INTRODUCTION

The use of the traditional continuous and stationary
feedback control laws does not alow solving the
tracking problem for many nonlinear systems, see
(Aeyels, 1985; Antsaklis, et al., 1995; Itkis, 1976).
Moreover, there exist various industrial processes
(especially power systems) that, for construction
simplicity and/or in order to attain better efficiencies,
may only be controlled through control signals
assuming a finite number of different values, with a
relatively slow switching.

Systems that contain both continuous and discrete-
valued variables or signals are called hybrid systems
see (Antsaklis, et al, 1995). The scientific
community interest about hybrid control laws
synthesis is relatively recent and the recently
published papers document how both theoretical and
practical problems are till open, see (Sastry, 1999)
and the rich bibliography therein. In (Nikitin, 1993;
Nikitin, 1994; Sontag, 1990) controllers with control
signals without constraints on their amplitude, but
constant in prescribed intervals of time, are
discussed. Vice-versa, in (ltkis, 1976) control laws
are proposed with two or infinite number of levels,
with an infinitely fast switching, see also (Khalil,

1996; Utkin, 1992) for a detailed discussion on
variable structure control.

This paper deals with the problem of robust tracking
control law synthesis for a class of hybrid systems,
consisting of continuoustime SISO uncertain
nonlinear plants, whose control inputs take value
from a finite set. To this am, a Lyapunov
methodology is presented for the design of control
laws with prescribed levels, which guarantee the
tracking of a sufficiently regular trajectory with a
prescribed maximum norm of the tracking error
vector, a prescribed rate of convergence and good
performances in terms of robustness and switching
frequency. A numerical example illustrates the
effectiveness of the proposed technique.

2. PROBLEM FORMULATION AND
PRELIMINARY RESULTS

Throughout this paper, the following notation is
used:

D,(s)= [s 5. s(”'l)] T for each signal sy c Y,



I, = Vz' Pz, zOR",POR™" symmetric and
pasiti ve definite (p.d.),

/\maX(P):maximum eigenvalue of the matrix P,
supposed pasitive definite.

Consider the continuous-time SISO nonlinea system
with urcertain parameters:

y™ = £t p,D, (y))*+F(t, p. Dy (y))u (L)

where tO7 O R isthe time variable; uOU OR is
the @ntrol input, which may assume afinite number
| of different levels u; OU,i =12,...,1; yOR isthe
output to be controlled; p isthe vedor of muncertain
parameters ranging into a compad set 0 O R™; Fis
ared scdar smooth function in its arguments, which
has the foll owing property:

00 OR", O compact set,
[F; >0:|F(t, p, Dn(y)) = Fa,

2
Ot 07, 0D, (y)00, Op 00 @

and, analogoudly, fisared scdar smoath function in
its arguments, which has the following property:

O00OR", O compad set,
f5 20:[f(t, p, Dn(y)) < fa,

3
Ot 07, 0D, (y)00, 0p00 )

Asame that 9([)] is the reference trgjedory and that
§(t)0c™ . with a bounded n-th derivative.
By imposing that:

£=D,(e) e=y-v, @

it is essy to verify that the state euation of the
tradking error vedor € may be expressed in the form:

é=Ee-Bw, (5)

where;

oo 1 0 0rC

0 C

oo o 1 0r
E=00 O O OcC, (6)

0 C

oo o0 0 0 1¢r

Hk —ky —kg ~k, E
k, OR, i=12...,n
B=[0 0 1 @
w=Fu+f-KTeg-g0, ®)

K=[k ky ks - k|-

For the aror system (5)-(8), the subseguent pradicd
tradking problem may be formulated.

Problem 1. (Pradicd trading problem)

Given the system (1) and the reference trgedory
9([)] design a mntrol law with a finite number of

levels, which guerantees that the trading error is
uniformly bounded and tends asymptoticdly to an
arbitrarily small neighbourhood d the origin of the
error space with a rate of convergence not greaer
thanagiven T, Op0O0O .

In order to solve the Problem 1, the following
preliminary Lemmeas are introduced.

Lemma 1. Consider the system (5)-(7) and asaume
that the matrix E has only eingenvalues with negative
red part. If the signal w satisfies the inequality:

w=0,0e0S, S={£:||£||Psp, p>0} 9)

where v=B"Pe and P is the solution of the
Lyapunov equation
ETP+PE=-Q, Qpd., (10)

then the eror & remains uniformly bounded and
converges to the hyper-ellipsoide S with a rate of
convergence not greder than an exponentia one
charaderised by atime constant:

7= 2,(Q7'P). (11)

Moreover, the time of convergence of € to Sis not
greder than:

t= fInBH_|£(t;]|P E (12)

where t, isan asumed initial instant of time.

Proof. By choosing as Lyapunov function for the
system (5):

V(e)=¢TPe = ||e||§, (13)
and by using (10), itis
-V(e)=¢"Qe+2w , (14)

which, for (9) and the hypothesis of stability about E,

gives:
Vie) ETQe
7—5\/8 < sg Tng, Oeds. (15



Since, see(Gantmacher, 1959:

Qe E 1
su = , deds, (16)
FEET Ped A (Q7P)

itis:

le@, < Jeto)], expl-(t—-to) /7).
€Yy
Ot,t, OT |t 2t,, De(t)OS

where T has the expresson (11). Finaly, from (9)
and from (17), the (12) easily foll ows.
.

With regard to the time onstant T, it may be
rendered dependent only on the d@genvalues of the
matrix E through a suitable choice of matrix Q in
(10), as pointed out by the following:

Lemma 2. If the roots A;,i=212,...,n, of the
charaderistic paynomial of the matrix E:

n

a(A)=A" +k A"+ kg = I‘l (A-12) (@9

are red, distinct and negative, and the matrix Q in
(10) ischosen as:

Q=-2@")*az?, (19
with the matrix Z such that:
Z'Ez =diag(A;, A5, A,), (20)
then:
0 n n O
Oon YA e 3D
0 £ £ 0
O n n ) n O
_ -1 ON A A2 .. A O
p=(zz") DIZ- ' Z ' £ D
O = O
O, n O
An—l ZAn AiZn—ZD
2 24
(21
and
_ 1
T=2A Pl=-——— .
maX(Q ) max {A; }
i=1,2,...,n
(22

Proof. The proof is omitted due to paper space
constraints.

¢

3. CONTROL LAW SYNTHESIS

The foll owing theorem resolves the pradicd tradking
problem of Sedion 2.

Theorem 1. Consider the aror system (5)-(8),

aswciated to the system (1) and to the reference
trajedory y, and asume that the components of the

vedor K are cosen such that the matrix E is
Hurwitz. The finite-valued control law:

ult,e):TxR" - U (23
defined asfollows, OtOT :

e if €e0S, uequal to one of the levels u; JU such

that:
- f(t, p(t) (y(t) ) KTe+ ( )(t)[
U; = TD%XE ( (t), Dn( ( ) ) E,
if VFF >01VzBTPE (24)
or
u < mlng_ . p(t) D, (¥()) - )+ KTg+9(n)(t)E
= F(t, p(t) D, (5(t))-¢ o
if vVE <0,v=B"Pe 25

e if edS,uequa toanylevel u; OU ,

provides a signal w in (8) that satisfies the condition
(9) of the Lemma 1 and that hence resolves the
problem of pradicd tradking.

Proof. The prodf direaly follows from Lemma 1 and
the expresson of w in (8), by the light of the
asaumptions (2) and (3), and the cmmpadanessof O .

¢

Clealy, the mnvergence of [e]|, also implies the

convergenceof e=y-vy. If aspedficbound oneis
impaosed, the following theorem may be used.

Theorem 2. In order to oltain that the tradking error
e=y-vy fulfils the condition |d <&, the value of
p inthe ontrol law hasto be equal to:
e
p= ) (26)
P11

where p,; isthe (1,1) element of the matrix P,

Proof. Let £ be the traking error vedor when
e=g&. Taking into acount that ||£||§, =¢" Pe, with

theintention of having | <€, it is necessary that:



HH

2P§:UE?E, oOR, @7)

o

and hence
Pull 0
1.0 B

where the question marks denote dements which, for
the purpaose of the proof, do not need to be spedfied.

From (28) follows:

Pui

and therefore:
Oe
o— - (30

ﬁplﬁ

g=pP*

58 8 ) o i

After all:

HH

400e?
' 2

p?=g"PE=(L 0 - O (31)

which gvesthe (26).
.

Remark 1. Note that by virtue of (2), (3), (11), (17),
(24) and (25), the needed maximum and minimum
levels of u depend on the reference trajedory 9(t)

and its first n derivatives, on s(to) and on the
required velocity of convergence

Remark 2. The eror bound p may be thosen as low
as one would desire. Nevertheless if thevalue of pis
deaeased, the eror € tends to exit from the region S
in lesstime. This implies that the average switching
frequency of the cntrol increeses till it bemmes
prohibitive from a redisation paint of view.

Remark 3. WheneOS, in order to reduce the
switching frequency among the control levels, it may
be thosen as control u the dosest level, among the
available ones, to the nominal control value
cdculated on the base of the nominal knowledge of
the parameters p. In the cae where this information

is not available, the last level assuumed on the
boundary of S may be sdeded and initialy, if
s(to)D S, thenul level.

Remark 4. In principle, the cnditions (24)-(25) of
the Theorem 1 are fulfilled by using, of the available
levels, the maximum and the minimum levels only.
The intermediate levels are not indispensable for the
reference trgjedory trading, but they are useful for
aleviating the arerage switching frequency. Indeed,
by adopting the strategy of seleding the dosest level
which satisfies the (24)-(25), the escagping velocity of
£ from S diminishes and therefore dso the switching
frequency.

Remark 5. On the basis of Lemma 2, if the vedor K
in (24)-(25) is siitably chosen, it is posdble to
obtain any prescribed maximum rate of convergence
T of &

Remark 6. If the system (1) islinea:

y) = —py I -~ pyy+ pou (32

and 00 R™ is an hyper-redange, then the
maximum and minimum values in (24) and (25) are
attained in correspondence of one of the vertices of
O, see(Ceentano, et al., 1993.

Remark 7. In pradice, the cntrol law (24)-(25) may
be eaily implemented by digital computers. To this
end it is necessry to have & one's disposal the
signals y and its first n-1 derivatives and the sign of
F. Nevertheless becaise of the inequdlities in
Theorem 1, with the increase of the sampling period
and of the 1/0 and elaboration delays, theterm vw in

the Lyapunov function derivative -V , defined in
equation (14), diminishes e S, in genera, and
consequently the adua rate of convergence of the
tracking error vedor incresses urtil the system
becomes unstable.

Remark 8. If the matrix P is chosen asin Lemma 2,
taking into acount the (21), the vaue of p in (26),
which all ows having |d < € , becomes:

€
p=— . (33
Jn
4. EXAMPLE
Consider the uncertain system:
Y==py—py+ pou (34

with y(to) =-1 y(to) =0,ty =0,and the reference
trajedory:

§(t)= codt). (35



By choosing A; = -1, A, = -2, it is consequently:

Y
11
w N
|
a w
T,
AN
11
Nl Mw
.

and finally, by virtue of Theorem 1:

« if £€0S, u equa to one of the levels

u; JU such that:

u 2 maxEK}Jr P2y + Y + (k= Pr)Es + (K — P2)Es E
= Po E
if vpp >0 (36)

or

u < minE&-Ir Py + Py + (K — pr)es + (Ky — po)es E
| Po E
if vpp <O 37)

« if €0S, u equal to any level u, OU (see
Remark 3).

Suppose that the parameters pg, p;and p, are
unitary and known. In the hypothesis that:

0.2,

e
U={-15-1-05,0+05+1 +.5},

the reference trgjedory and the obtained control u
and output y are reported in Fig. 1. The eror phase-
planetrajedory is srownin Fig. 2.

Case with known parameters

y, yref, u

I
10 15

sec

Fig. 1. The output y (solid line), the reference
trajectory ¥ (dash-dotted line), and the finite-

valued control u.

Error trajectory
T

12 I I I I I I I I I
-0.5 -0.25 0 0.25 0.5 0.75 1 1.25 15 175 2

Fig. 2. The aror trajedory in the phase plane.
Vice versa, suppasing that a redisation of the

uncertain parametersis:

t)=1+0.1 SH]—-tE
po() + CODZ .

p,(t)=1+ O.lsin%t@ 39)

p,(t)=1+ 0.13in%t§

and that the oontrol law designer only knows an
estimate of the belonging set 00, in the hypothesis
that:

casea

€=0.2,
U ={-15,-1.0-0.5,0,+0.5,+1.0,+1.5},
p, 0[0.9,1.1], p, 0[0.9,1.1], p, O[0.9,1.1],

the @ntrol u and the output y that are obtained are
reported in Fig. 3.

Case a

y, yref, u

N

I
10 15
sec

Fig. 3. The output y (solid line), the reference
trajedory Y (dash-dotted ling), and the finite-

valued control u.



case b (areduced number of control levels)

€=0.2,
U ={-15,0, +L.5},
p, 0[09,1.1], p, 0[0.9,1.1], p, O[0.9,1.1],

the oontrol u and the output y that are obtained are
reported in Fig. 4.

Case b

y, yref, u
o
I
]
[
\
]
]
[

-05[ v
/\
/ \
\
N

sec

Fig. 4. The output y (solid line), the reference
trajectory ¥ (dash-dotted line), and the finite-

valued control u.

case c (a reduced maximum error, larger control
levels and larger amount of uncertainty on the
parameters)

e=0.1,
u={-202},
p, 0[0.7,1.3], p, 0[0.7,1.3], p, 0[0.7,2.3],

the cntrol u and the output y that are obtained are
reported in Fig. 5.

| |

| |
+
il

|
B

15

Fig. 5. The output y (solid ling), the reference
trajectory ¥ (dash-dotted line), and the finite-

valued control u.

Case c

y, yref, u
o
|

5. CONCLUSIONS

In this paper a Lyapunov methoddogy has been
presented for the design of control laws with
prescribed finite values for a dass of uncertain
nonlinea SISO systems. In particular, the necessary
theoreticd results have been provided for the
solution of a pradicd tradking problem, guaranteeéng
the tracking of a sufficiently regular trajedory, with a
prescribed maximum tracking error, a prescribed
convergence velocity and good performances in
terms of robustness and switching frequency. A
numericd example has ill ustrated the goplicability of
the technique.
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