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Abstract: Most stochastic models for determining the optimal target value for an
industrial process are developed in the extensive literature under the assumptions that
the parameter values of the underlying distributions are known with certainty. In actual
practice, such is simply not the case. When these models are applied to solve real-
world problems, the parameters are estimated and then treated as if they were the true
values. The risk associated with using estimates rather than the true parameters is
called estimation risk and is often ignored. When data are limited and (or) unreliable,
estimation risk may be significant, and failure to incorporate it into the model design
may lead to serious errors. Its explicit consideration is important since decision rules
that are optimal in the absence of uncertainty need not even be approximately optimal
in the presence of such uncertainty. The aim of the present paper is to show how the
invariance principle may be employed in the particular case of finding, from the
statistical data, the best setting for the target value of an industrial process. The
examples are given. Copyright  2002 IFAC
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1. INTRODUCTION

Design of an automation system does not consist
only in establishing architecture of components with
the lower cost. Indeed, with an economic point of
view an automation system must provide an effective
control of an industrial process. This paper presents a
methodology that takes into account the second
aspect.

The problem considered in this paper is as follows.
Individual items are produced continuously from an
industrial process. Each item is checked to determine
whether it satisfies a critical lower (or upper)
specification limit. If it does, it is sold at the regular
price; if it does not, it is sold at a reduced price. The
target value of a process is generally set somewhat
above the lower specification limit (or below the
upper specification limit). The further the target is set

from the specification limit on the safe side, the
lower the proportion of rejected items. However,
there is an offsetting cost (sometimes called the give-
away cost) which restricts the extent to which the
target value can be profitably adjusted in this
direction.

For an industrial process in which items are produced
continuously, suppose there is a lower specification
limit h for a quality characteristic such that items
with measured values less than h are rejected (for
example, to be reprocessed or sold as substandard
material). A target value µ = h + ∆ is to be selected
so that the net income for the process is maximized.

The general problem considered here is to develop a
procedure that takes process variability and
production costs into account for determining the
optimal value of ∆ (and hence the optimal target
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value µ). With obvious modifications, the procedure
developed here applies if the specification limit is an
upper rather than a lower one. For ease of exposition,
however, we choose to discuss the problem in terms
of a lower specification limit.

For example, consider the situation in which the
quality characteristic is the weight of packages of
food. An automatic weighing machine routinely
weighs all individual packages. Depending on
whether a package satisfies the lower
specification limit µ or not, the machine either
accepts or rejects it. The rejected items are
classified as substandard material and are sold at a
reduced price. Since the production costs are
subject to variation from day to day, it is desired
to devise a relatively simple procedure that could
be used routinely by production personnel for
determining the best target value. Although the
problem discussed in this paper concerns the
weight of the product, the same approach applies
to other quality characteristics.

For a particular example, Bettes  (1962) solved the
problem of choosing the optimal values for the
target and upper specification limit. A brief
description of the problem of optimal overfill is
given by Grant (1972). Chiu and Wetherill (1973)
reviewed the literature on the economic design of
continuous inspection procedures.

In this paper, we consider the situation in which the
variation of the measured value of the quality
characteristic is approximated by a parametric
distribution. Attention is restricted to invariant
families of distributions.

In particular, the case is considered where a
previously available complete or type II censored
sample is from a continuous distribution with cdf
F((x-µ)/σ) and pdf f(x;µ,σ)=σ-1 f•[(x-µ)/σ], where
F(⋅) is known but both the location (µ) and scale (σ)
parameters are unknown. For such family of
distributions the decision problem remains invariant
under a group of transformations (a subgroup of the
full affine group) which takes µ  (the location
parameter) and σ  (the scale) into aµ + b and aσ,
respectively, where b lies in the range of µ, a > 0.
This group acts transitively on the parameter space
and, consequently, the risk of any equivariant
decision rule is a constant. Among the class of such
decision rules there is therefore a “best” one. The
effect of imposing the principle of invariance, in this
case, is to reduce the class of all possible decision
rules to one.

The outline of the paper is as follows. An invariant
embedding technique is presented in Section 2.
Formulation of the problem is given in Section 3.
Section 4 is devoted to solution of the problem.

2. PRELIMINARIES

This paper is concerned with the implications of
group theoretic structure for invariant performance
indexes. We present an invariant embedding
technique based on the constructive use of the
invariance principle in mathematical statistics. This
technique allows one to solve many problems of the
theory of statistical inferences in a simple way.

The aim of the present paper is to show how the
invariance principle may be employed in the
particular case of finding the optimal target value for
an industrial process. The technique used here is a
special case of more general considerations
applicable whenever the statistical problem is
invariant under a group of transformations, which
acts transitively on the parameter space.

Our underlying structure consists of a class of
probability models (X, A, P ), a one-one mapping ψ
taking P  onto an index set Θ, a measurable space of
actions (U, B), and a real-valued function r defined
on Θ × U . We assume that a group G of one-one A
- measurable transformations acts on X and that it
leaves the class of models (X, A, P ) invariant. We

further assume that homomorphic images G  and G
~

of G act on Θ and U , respectively. ( G may be

induced on Θ through ψ; G
~

 may be induced on U
through r). We shall say that r is invariant if for every
(θ,u) ∈ Θ × U

),u,(r)ug~,g(r θ=θ    g∈G.
(1)

Given the structure described above there are
aesthetic and sometimes admissibility grounds for
restricting attention to decision rules ϕ: X → U
which are (G, G

~
) equivariant in the sense that

G.g   ,   x(x),g~(gx) ∈∈ϕ=ϕ X
(2)

If G  is trivial and (1), (2) hold, we say ϕ is G-
invariant, or simply invariant (Nechval, 2000;
Nechval et al., 2001).

2.1 Invariant Functions

We begin by noting that r is invariant in the sense of
(1) if and only if r is a G•-invariant function, where
G• is defined on Θ × U as follows: to each g∈G, with

homomorphic images g~ ,g  in G
~

,G  respectively, let

g•(θ,u)= u)g~ ,g( θ , (θ,u)∈(Θ × U ). It is assumed that

G
~

 is a homomorphic image of G .

Definition 1 (Transitivity). A transformation group
G  acting on a set Θ is called (uniquely) transitive if



for every θ, ϑ∈Θ there exists a (unique) Gg ∈  such

that g θ=ϑ.

When G  is transitive on Θ we may index G  by Θ:
fix an arbitrary point θ∈Θ and define 

1
gθ  to be the

unique Gg ∈  satisfying g θ=θ1. The identity of G

clearly corresponds to θ. An immediate consequence
is Lemma 1.

Lemma 1 (Transformation). Let G  be transitive on
Θ. Fix θ∈Θ and define 

1
gθ as above. Then 

1qg θ =

1
gq θ for θ∈Θ, Gq ∈ .

Proof.  The  identity θ=θ=θ θθ 11
gqqg 1q   shows that

1qg θ  and 
1

gq θ both take θ into 1qθ , and the lemma

follows by unique transitivity.   e

Theorem 1 (Maximal Invariant). Let G  be transitive
on Θ. Fix a reference point θ0∈Θ and index G  by Θ.
A maximal invariant M with respect to G• acting on
Θ  ×  U  is defined by

.  u),(   ,ug~)u,(M 1 U×Θ∈θ=θ −
θ

(3)

Proof.  For each (θ,u)∈(Θ × U ) and Gg ∈

)u,(Mug~ug~g~g~    

ug~)g~g~(ug~)g~()ug~,g(M
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(4)
by Lemma 1 and the structure preserving properties
of homomorphisms. Thus M is G•-invariant. To see
that M is maximal, let M(θ1,u1)=M(θ2,u2). Then

2
1

1
1 ug~ug~

21

−
θ

−
θ =  or u1= g~ u2, where 1

21
g~g~g~ −

θθ= . Since

θ1= 01
g θθ = 22

1 ggg
21

θ=θ−
θθ , (θ1,u1)=g•(θ2,u2) for

some g•∈G•, and the proof is complete.   e

Corollary 1 (Invariant Embedding). An invariant
function, r(θ,u), can be transformed as follows:

),,v(r)ug~,g(r)u,(r 1
ˆ

1
ˆ η=θ=θ −

θ
−
θ

&&

(5)

where v=v(θ, θ̂ ) is a function (it is called a pivotal
quantity) such that the distribution of v does not

depend on θ; η=η(u, θ̂ ) is an ancillary factor; θ̂  is
the maximum likelihood estimator of θ  (or the
sufficient statistic for θ).

Corollary  2 (Best Invariant Decision Rule). If r(θ,u)
is an invariant loss function, the best invariant
decision rule is given by

),ˆ,(u)x( 1 θηη==ϕ ∗−∗∗

(6)
where

{ }.),v(rE inf arg η=η η
η

∗ &&

(7)
Corollary 3 (Risk). A risk function (performance
index)

{ } { }),v(rE))x(,(rE))x(,(R oo&&
o

η=ϕθ=ϕθ ηθ

(8)
is constant on orbits when an  invariant decision  rule
ϕ(x) is used, where )x,(vv θ= oo  is a function whose

distribution does not depend on θ; )x,u(oo η=η  is
an ancillary factor.

For instance, consider the problem of estimating the
location-scale parameter of a distribution belonging
to a family generated by a continuous cdf F: P ={Pθ:
F((x-µ)/σ), x∈R, θ∈Θ}, Θ={(µ,σ): µ,σ∈R,
σ>0}=U. The group G of location and scale changes

leaves the class of models invariant. Since G
induced on Θ by Pθ → θ is uniquely transitive, we
may apply Theorem 1 and obtain invariant loss
functions of the form

]/)x( ,/))x([(r))x(,(r 21 σϕσµ−ϕ=ϕθ ,
(9)

where
θ=(µ,σ) and ϕ(x)=(ϕ1(x),ϕ2(x)).

(10)

Let )ˆ,ˆ(ˆ
21 θθ=θ  and u=(u1,u2),  then

),v ,vv(r),v(r)u,(r 22211 ηη+=η=θ &&&&

(11)

where v=(v1,v2), v1= σµ−θ /)ˆ( 1 , v2= σθ /ˆ
2 ;

η=(η1,η2),  η1= 211
ˆ/)ˆu( θθ− ,  η2= 22

ˆ/u θ .

An invariant embedding technique, which is used for
determining the optimal target value for an industrial
process, is based on the result of Corollary 1.

3. PROBLEM STATEMENT

Let X be the measured value of the quality
characteristic, h be the lower specification limit,
and µ = h + ∆ be the target value. In industrial
applications, the optimal value of ∆ is ordinarily
greater than zero but negative values are possible.
We will return to this point later.

For the sake of simplicity, we shall consider the
situation in which the quality characteristic data can
be measured on a continuous scale. We restrict
attention to the case where these quality
characteristic values constitute independent



observations from a distribution belonging to
invariant family. In particular, we consider a
distribution belonging to location-scale family
generated by a continuous cdf F: P ={Pθ: F((x-µ)/σ),
x∈R, θ∈Θ}, Θ={(µ,σ): µ,σ∈R, σ>0}, which is
indexed by the vector parameter θ=(µ,σ), where µ
and σ (>0) are respectively parameters of location
and scale. The group G of location and scale changes
leaves the class of models invariant. The purpose in
restricting attention to such families of distributions
is that for such families the decision problem is
invariant, and if the estimators (decision rules) are
equivariant (i.e. the group of location and scale
changes leaves the decision problem invariant), then
any comparison of estimation procedures is
independent of the true values of any unknown
parameters. The common distributions used in
industrial problems are the normal, exponential,
Weibull, and gamma distributions.

Let us assume that the net income from a single
item is given by
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where

σ
µ−

=
X

Z

(13)

is a pivotal quantity, c1>c2. The expected net
income per item is
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where f(.) is a probability density function
belonging to location-scale family, f•(.) is the
probability density function of Z.  The first term
on the right-hand side of equation (14) is the
income from the accepted items, the second term

is the give-away cost and the third term is the
income from the rejected items.

The problem is to maximize equation (14) with
respect to ∆.

4. PROBLEM SOLUTION

4.1 Complete Information

Let us assume that the parameter σ is known.
Differentiating equation (14) with respect to ∆, we have
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Setting equation (15) equal to zero, we have
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Denote the solution of equation (16) by ∆0. If the
second derivative
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with ∆ = ∆0 is less than zero, that is, if
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then ∆0 = ∆* (the optimal value). In other words, if
inequality (18) is true, the solution of equation (16)
gives the best value of ∆.

The optimal value of ∆ is such that equation
(16) and inequality (18) are satisfied simultaneously.

For example, if the random variable X follows a
normal distribution with the probability density
function

,
2
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x∈(−∞, ∞);  µ∈(−∞, ∞),  σ > 0,
(19)



inequality (18) is reduced to
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If ∆0 ≥ 0, the inequality (20) holds because σ > 0
(hence the left-hand side is negative) and the right-
hand side is always greater than zero.

Let us suppose that X is a Weibull variate with the
probability density function f(x;µ,σ,α) and
distribution function F(x; µ,σ,α), where:
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The parameter α is a shape parameter and it gives a
variety of shapes to f(x;µ,σ,α). It is assumed that this
parameter is known. Thus we have a simple and a
flexible family of density functions. It can be shown
that for this distribution inequality (18) is true if ∆0 <
0 and α>1.

Numerical Example 1. We shall now illustrate the
method using the example introduced in Section 1.
The items here are packages of food. The weight
marked on each package is one pound, and this is
the lower specification limit. The selling price of
an accepted package is 1.5$ and the cost of excess
material is 1$ per pound. A rejected package is sold
for 0.5$. It is assumed that X (the measured value
of the weight) is a Weibull variate with the
probability density function given by (21). The
standard deviation of the process is approximately
0.01 and the shape parameter α is equal to 3. We
have, then, for this process,

c1 =  1.5$
c  =  1$

     c2  =  0.5$
σ =  0.01
h =  1.

(23)
Then equation (16) is reduced to
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and therefore
∆*= − 0.00577,

(26)
so that, according to this analysis, the optimal
target value is

µ = h + ∆* = 0.99423 pounds.
(27)

4.2 Incomplete Information

More often than not the parameter σ > 0 is unknown. We
shall assume that there is obtainable from some
informative experiment (a random sample of
observations Xn=(X1, … ,Xn) under a preassigned
target value µ) a sufficient statistic S2 for σ with
density function q(s2;σ) of the form

)./s (f);s(q 2
1

2 σσ=σ −

(28)
It is required to find the best invariant estimator of ∆
on the basis of the data sample Xn=(X1, … ,Xn)
relative to the expected net income function
Eσ{r(σ,∆)} (see (14)).

We are thus assuming that for the family of density
functions an induced invariance holds under the
group G of transformations: S2→aS2 (a > 0). The
family of density functions satisfying the above
conditions is, of course, the limited one of normal,
negative exponential, Weibull and gamma (with
known index) density functions. The structure of the
problem is, however, more clearly seen within the
general framework.

Since the expected net income function E{r(σ,∆)}
is invariant under the group G of scale changes, the
technique of invariant embedding (see Section 2)
allows one to transform E{r(σ,∆)} as follows:
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We choose η2 such that the function
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is maximized.



The distribution of V2, which does not depend on an
unknown parameter σ, can be obtained from (28).
Thus, the unknown parameter σ is eliminated from
the problem.

The best invariant estimator (BIE) of ∆ is given by
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Differentiating equation (32) with respect to η2, we have
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then o
2η = ∗η2 (the optimal value). In other words, if

inequality (38) is true, the solution of equation (36)
gives the best value of η2.

The optimal value of η2 is such that equation
(36) and inequality (38) are satisfied simultaneously.

Numerical Example 1 (Continued). It is assumed that
the parameter σ>0 of the Weibull distribution is
unknown. Let Xn=(X1, … ,Xn) be a random sample of
observations of the measured value of the weight
of packages of food under a preassigned target value
µ  and

∑
=

αα µ−
n

1i
i2 .)(X = S

(39)
It can be justified by using the factorization theorem

that α
2S  is a sufficient statistic for σ. The sampling

distribution of this statistic is given by
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Using the general results of this paper, we can define

an optimal value ( ∗η2 ) of η2 which satisfies the
equation
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Then the best invariant estimator (BIE) of ∆ is given
by (33), so that, according to this analysis, the
optimal target value is

µ = h + ∆BIE = h + .S22
∗η

(42)

5. CONCLUSIONS

The results obtained in this paper agree with the
simulation results, which confirm the validity of the
theoretical predictions of performance of the
suggested approach.
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