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Abstract: A modiÞcation of the Smith Predictor Control schemes is introduced. This
modiÞcation consists in a periodical resetting of the initial condition of the predictor.
It allows to extend the use of these control laws to unstable linear systems with
delay. The continuous and discrete implantation of this scheme is considered. The
stability of the scheme is proved and sufficient conditions for robustness with respect
to parameter uncertainty and delay uncertainty are obtained in the discrete case. An
illustrative example is discussed. Copyright c°2002 IFAC
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1. INTRODUCTION

The Smith Predictor (SP) (Smith, 1959), (Palmor,
1996), depicted in Figure 1, can be considered as
the Þrst option control method for linear processes
that have a delay in their input or output. Such
delays occur frequently due to transport phenom-
enons, time consuming information processing or
sensors design, among others. The wide accep-
tance of this control strategy is due to its two step
design. The Þrst step consist in designing a control
law for the system without delay, with the help
of standard control tools, familiar to engineers.
The second step is the straightforward obtention
of an equivalent controller for the delayed system.
Clearly, this procedure does not require any exper-
tise in the control and analysis of delayed systems.
Moreover, the discrete time version of the SP
(Palmor and Halevi, 1990) answers to the central
concern of control engineers that compensators
are commonly implemented on digital equipment.
However, in the continuous case (Smith, 1959),
(Palmor and Halevi, 1983), (Palmor, 1996) as well
as in the discrete case (Palmor and Halevi, 1990),
the use of the SP is restricted to stable plants.
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Fig. 1: Smith Predictor control scheme

In recent works, it was shown in the framework of
the closely related control scheme of model process
control in the spirit of Manitius and Olbrot (1979)
that it is possible to obtain a robust closed loop
with respect to parameter and delay mismatch in
the case of unstable processes by introducing a
periodic resetting of the prediction (Mondié et al.,
2001b).

These ideas lead naturally to the Continuous
Resetting Smith Predictor (CRSP) and to the
Discrete Resetting Smith Predictor (DRSP) which
are the object of this paper.

The paper is organized as follows: the CRSP is
presented in Section 2. The resetting leads to the
design in Section 3 of a DRSP whose stability and
robustness properties with respect to parameter
mismatch and delay mismatch are established. An
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illustrative example is presented in Section 4 and
the paper ends with some concluding remarks.

2. RESETTING SMITH PREDICTOR

In this section we consider observable linear mul-
tivariable system with nominal delay h∗ in the
input described by

úx(t) =A∗x(t) +B∗u(t− h∗) + d(t− h∗) (1)

y(t) =C∗x(t) (2)

where the nominal parameters areA∗ ∈ Rn×n, B∗ ∈
Rn×m, C∗ ∈ Rp×n, d(t) is an input bounded
disturbance and the initial condition is x(t) =
f(t), t ∈ [−h∗, 0]. In a robust analysis framework,
the delay and the parameters used in the design,
h, A,B and C can be different from h∗, A∗ B∗

and C∗, respectively.

A prediction xp(t) for the variable x(t+h), is given
by

xp(t) = e
Ahx(t) +

t+hZ
t

eA(t+h−σ)Bu(σ − h)dσ.

DeÞning τ := σ − h, xp(t) can be rewritten as

xp(t) = e
Ahx(t) +

tZ
t−h

eA(t−τ)Bu(τ)dτ . (3)

The above depends only on past and present
values of x(t) and u(t). Thus, xp(t) is available
at time t.

However, as explained in Palmor (1996) the SP
is not suitable for stabilization due to internal
instability linked to the unstable prediction. A
realization of the control law in the so-called
integral form is suggested in Palmor (1996). This
approach was also proposed in the framework
of spectrum assignment with distributed delay
(Manitius and Olbrot, 1979). However, as shown
in Mondié et al. (2001a), when the integral is
calculated with a constant step methods, such
implementation produces an unstable behavior if
the control law is itself unstable, whatever the
precision of the integration method.

The purpose of this work is to allow the Smith
predictor to control unstable systems, without
loosing its main advantage, namely, the simple
design procedure.

3. RESETTING OF THE SMITH PREDICTOR

In this paper, a periodic refreshing of the calcu-
lated initial condition is introduced in the Contin-
uous Smith predictor.

A timing device provided by a square signal such
that l := tk+1 − tk > h, k = 1, 2, ... determines
the predictor and model resetting time as shown
in the overall scheme depicted in Figure 2.

Fig. 2: Resetting Smith predictor.

The calculator block computes an estimate of
the state x(ti + h) for i = 1, ..., k, k + 1, ....The
estimated value x(ti+h) is used as the initial value
of the predictor which will deliver a �continuous�
estimate of the state x(t+h). The initial condition
of the model is periodically resetted to the value
of the state of the system.

The elements of the control scheme are next
described in detail.

Resetting Predictor: During the time interval
[tk − h, tk) we compute the value of the integral

tkZ
tk−h

eA(t−τ)Bu(τ)dτ

as a solution to the differential equation
úz(t) = Az(t) +Bu(t)

with zero initial conditions at time tk−h. At time
tk, this integral, along with the measured value of
the state of the system allows the computation of

xc(tk + h) = e
Ahx(tk) +

tkZ
tk−h

eA(tk−τ)Bu(τ)dτ (4)

which is an estimate of x(tk + h) computed at
time tk. Next, at time tk, k = 1, 2, ... the predictor
is initialized with the computed value xc(tk + h).
The prediction xp(t) of the state x(t+ h) is then

xp(t) = e
A(t−tk)xc(tk + h) +

tZ
tk

eA(t−τ)Bu(τ)dτ ,

t ∈ [tk, tk+1). (5)

Finally, substituting (4) into (5) leads to

xp(t) = e
A(t−tk+h)x(tk) +

tZ
tk−h

eA(t−τ)Bu(τ)dτ ,

t ∈ [tk, tk+1). (6)

Resetting Model: At time tk, k = 1, 2, ..., the

model is initialized with the computed value x(tk).
The state xm(t) is given by



xm(t) = e
A(t−tk)xm(tk) +

tZ
tk

eA(t−τ)Bu(τ − h)dτ ,(7)

Error feed into the controller
e(t) = Cxp(t) + y(t)−Cxm(t) + r(t). (8)

It is possible to perform a robustness analysis
with respect to parameter and delay mismatch,
and with respect to bounded disturbances of the
CRSP, as the one done in Mondié et al. (2001b) for
the Resetting Process Model Control. However,
due to the complexity of the control law, the
difficulty of the analysis is increased. Moreover,
the analysis of Mondié et al. (2001b) is based on
the assumption that the resetting time is greater
than the delay. This hypothesis is restrictive in
particular for large delays, because, between re-
setting the controller acts only on the predictor,
and the state is not feedback.

4. DISCRETE RESETTING SMITH
PREDICTOR (DRSP)

The periodic resetting introduced above reminds
somehow the period of discrete time controller.
Moreover there is a practical interest for digitally
implemented controllers. These facts are strong
motivation for developing a discrete implemented
version of the RSP.

4.1 Discrete Resetting predictor

For the discretization of the scheme, the sampling
period is selected so that the design time delay
is a multiple over the integers of the sampling
period T . It is well known that in the discrete
framework the sampling period must de small
enough so that it meets the requirements inherent
to the discretization process. Since the sampling
period is a design parameter it can be chosen so
that it fulÞlls both requirements, namely, nT = h,
where n is an integer and where T is smaller
than the maximum allowed value for an exact
discretization.

The DRSP is obtained by choosing the resetting
time of the previous section so that it coincides
with the sampling time. A zero order hold is used
in the control action.

Consider the expression (6) at time t = kT, k =
0, 1, 2, ..., then

xp(kT ) = e
A·nTx(kT ) +

kTZ
kT−nT

eA(kT−τ)Bu(τ)dτ .

DeÞning kT − τ = ζ, it follows that

xp(kT ) = e
AnTx(kT ) +

nTZ
0

eA·ζBu(kT − ζ)dζ.

Because of the zero order hold, u(kT −ζ) is piece-
wise constant over each intersampling interval,
hence

xp(kT ) = e
AnTx(kT )+

nX
j=1

T ·jZ
T ·(j−1)

eA·ζBdζ · u(kT − jT ).(9)

Now, observe that deÞning nT + ζ = σ; nT −T +
ζ = σ; nT − 2T + ζ = σ; ...; ζ = σ, respectively in
the following equations

nTZ
nT−T

eA·ζBdζ = eA·(nT−T )
TZ
0

eA·σBdσ,

nT−TZ
(nT−2T )

eA·ζBdζ = eA·(nT−2T )
TZ
0

eA·σBdσ,

...
TZ
0

eA·ζBdζ =

TZ
0

eA·σBdσ,

then, deÞning z as the backward shift operator,
(9) can be written as

xp(kT + nT ) = e
A·nTx(kT ) +Φ(z) · u(kT ) (10)

where

Φ(z) = φn−1Γ · zn + · · ·+ φΓ · z2 + Γ · z1,

and

φ = eAT ; Γ =

TZ
0

eAσBdσ. (11)

Again, due to the delayed nature of the input,
the prediction at the sampling time kT + nT,
depends only on the value of x(kT ) and of values
of the input at kT and previous sampling instants.
Hence this prediction is available at time kT .

Remark 1. It is possible to derive the expression
for the predictor by considering the discretization
of system (1) (Astrom andWittenmark, 1997). An
interpretation of Φ(z), that will be useful in the
sequel, is in terms of the model transfer function
with no delay P (z−1) := (z−1I − φ)−1Γ . Indeed
one can see in a straightforward manner that

Φ(z) = P (z)− φn · zn · P (z) (12)

4.2 Discrete Resetting Smith Predictor

Now, if we apply the same resetting process as in
the continuous case, at each sampling instant, we
are able to describe in detail the elements of the
Discrete Resetting Smith Predictor.

Predictor: The resetting predictor is the one
developed above, namely



xp(kT ) = φ
nx(kT )+

nX
j=1

φj−1Γu(kT − jT ). (13)

Model error: In this case, due to the fact that
the resetting occurs at each sampling time instant,
we observe that

x(kT )− xm(kT ) = 0, (14)

hence the model error is forced to zero at each
sampling time and there is no need to compute it.

Error feed into the controller: It is given by
e(kT ) = r(kT )−Cxp(kT ) + y(kT )−Cxm(kT )]
and because of (14) it reduces to

e(kT ) = r(kT )−Cxp(kT ) (15)

Indeed, we are now in a discrete framework. In the
following, let us consider the control law u(z) =
G(z)e(z), and let then deÞne the discrete transfer
function without delay, of the model employed
in the design P (z) = (z−1I − φ)−1Γ and of the
process P ∗(z) = (z−1I−φ∗)−1Γ∗, the delay of the
process zn

∗
and the delay employed in the design

zn. The overall control scheme is then:

Fig. 3 Discrete resetting Smith Predictor

Remark 2. The resulting scheme is equivalent to
the one that would result from the discretiza-
tion of the Resetting Process Model presented
in Mondié et al. (2001b). This shows indeed the
closeness of the two approaches.

5. STABILITY AND ROBUSTNESS OF THE
DRSP

An additional advantage of the DRSP, compared
to the CRSP introduced in the Þrst part of this
work, is that it is possible to use in a straightfor-
ward manner the machinery available for the dis-
crete time approach to perform the stability and
robustness analysis of the scheme. For simplicity,
we restrict our attention to the single input, single
output case in the rest of the paper.

5.1 Stability analysis

The reference to output transfer function is
y(z)/r(z) = Nr(z)/Dr(z) where

Nr(z
−1) =G(z)C∗P ∗(z)zn

∗
(16)

Dr(z
−1) = 1 +G(z)CΦ(z) +G(z)CφnP ∗(z)zn

∗

Substitution of the expression (12) for Φ(z) gives:

Nr(z
−1) =G(z)C∗P ∗(z)zn

∗

Dr(z
−1) = 1 +G(z)C{P (z)− φnP (z)zn}

+G(z)CφnP ∗(z)zn
∗

When there is no mismatch in the parameters and
in the delay of the process and of the design model,
this transfer function simpliÞes to

y(z)

r(z)
=

G(z)CP (z)

1 +G(z)CP (z)
zn.

Then if the controller G(z) is designed so that
the closed loop system with no delay has a stable
closed loop polynomial, it follows that the closed
loop resulting from for the Scheme of Figure 3
has the same characteristic polynomial, hence it
is stable.

The disturbance to output transfer function is
y(z)/d(z) = Nd(z)/Dd(z) where

Nd(z
−1) =C∗{1 +G(z)CΦ(z)}P ∗(z)zn∗

Dd(z
−1) = 1 +G(z)CΦ(z)

+G(z)CφnP ∗(z)zn
∗

(17)

Again, the unstable poles of the numerator are
canceled with those of the denominator, and if
(16) is stable then (17) is also stable.

Remark 3. If Φ(z) is realized as the right hand
side of (12) the transfer function between the
output and the disturbance when there is no
mismatch,

y(z)

d(z)
=

n
1− G(z)CφnP (z)zn

1+G(z)CP (z)

o
CP (z) · zn

is always unstable, because the unstable poles
of the term CP (z) outside the brackets of the
numerator remain. Indeed, although Φ(z) and
P (z) − φn · P (z) · zn are equal from an algebraic
point of view, there is indeed a fundamental
difference in the implantation.

5.2 Robustness Analysis

It is now possible to give necessary conditions for
robust stability based on the principle of variation.

Theorem 1. Consider the discretizaton of the
process (1) in closed loop with the control law
(15), (13) and assume that the controller is de-
signed so that under ideal circumstances, the
closed loop is stable. Assume also that the real
process and design model differ. Then, if the con-
dition ¯̄̄

G(z)Cφn{P ∗(z)z(n∗−n) − P (z)}zn
¯̄̄

< |1 +G(z)CΦ(z) +G(z)CφnP (z)zn| (18)

holds for all z on the unit circle, then the closed
loop remains stable.



Proof. Observe that the stability region in the z-
plane is the outside the unit circle. The controller
G(z) is designed so that it stabilizes the process,
then the closed loop

1 +G(z)CΦ(z) +G(z)CφnP (z)zn (19)

has no roots inside the unit circle. It follows from
the above condition and from Rouché�s theorem
that (19) and

1 +G(z)CΦ(z) +G(z)CφnP (z)zn

+G(z−1)Cφn{P ∗(z)z(n∗−n) − P (z)}zn
=1 +G(z)CΦ(z) +G(z)CφnP ∗(z)zn

∗
,

the closed loop characteristic equation when un-
certainty is present, have no roots inside the uni-
tary circle, hence it is stable.

Corollary 2. If there is no mismatch in the delay,
then the sufficient condition (18) reduces to

|G(z)Cφn{P∗(z)− P (z)}| (20)

< |1 +G(z)CΦ(z) +G(z)CφnP (z)zn|
Proof. Substituting n = n∗ into (18) leads to

|G(z)Cφn{P ∗(z)− P (z)}| |zn|
< |1 +G(z)CΦ(z) +G(z)CφnP (z) · zn| ,

on the unit circle |z−n| = 1 and (20) follows

Theorem 3. When there is no mismatch in the
parameters, then if

|G(z)CφnP (z)| (21)

<
1

2
|1 +G(z)CΦ(z) +G(z)CφnP (z)zn|

holds for z on the unit circle, then the closed loop
is stable.

Proof. Let ∆n = n−n∗. It follows from (21) and
from the fact that

¯̄
zn

∗ ¯̄
= 1 and

¯̄
1− z∆n¯̄ ≤ 2

that

|G(z)CφnP (z)|
¯̄̄
zn

∗ ¯̄̄ ¯̄
z∆n − 1¯̄

<
¯̄
1 +G(z)CΦ(z) +G(z)CφnP (z)z−n

¯̄
and that¯̄̄

G(z)CφnP (z)zn
∗
(1− z∆n)

¯̄̄
< |1 +G(z)CΦ(z) +G(z)CφnP (z)zn| .

The arguments used above imply that

1 +G(z)CΦ(z) +G(z)CφnP (z)zn
∗

(22)

has no roots inside the unit circle, hence the closed
loop is stable for all delay.

Theorem 4. When there is no mismatch in the
parameters, if there exists some z on the unit
circle so that,

W (z) ≥ 1

2
,

where

W (z) =
|G(z)CφnP (z)|

|1+G(z)CΦ(z) +G(z)CφnP (z) · zn| .

Let

ωm = sup{ωi :W (e−jωT ) < 1

2
,∀ω ∈ (0,ωi]}

then the closed loop is stable for ∆n ∈ [0, δn)
where δn is the closest integer smaller than öα
deÞned as

öα =min { inf
ω∈(0,ωm)

2

ω
arcsin

1

2W (e−jωT )
, n∗}.

Proof. Let z = e−sT and let us associate to the
characteristic equation (22)
1+G(e−sT )CΦ(e−sT ) +G(e−sT )CφnP (e−sT )esTn

∗
= 0

where n∗ is assumed to be a real variable. Sub-
stitute α = n− n∗, rearranging terms and taking
modules give¯̄

G(e−sT )CφnP (e−sT )
¯̄ ¯̄
e−sTn

∗ ¯̄ ¯̄
(1− e−sTα)

¯̄
=
¯̄
1+G(e−sT )CΦ(e−sT ) +G(e−sT )CφnP (e−sT )e−sTn

¯̄
.

For s on the imaginary axis
¯̄
e−jωTn

∗ ¯̄
= 1 and¯̄

e−jωT∆n − 1¯̄ = 2 ¯̄sin(ωTα2 )
¯̄
. The above is then¯̄

G(e−jωT )CφnP (e−jωT )
¯̄
2

¯̄̄
sin(

ωTα

2
)

¯̄̄
=
¯̄
1+G(e−jωT )CΦ(e−jωT ) +G(e−jωT )CφnP (e−jωT )e−njωT

¯̄
.

We can conclude that if there exist ω and α
(continuous) such that this equation holds, a
crossing of the imaginary axis occurs in the s-
plane. Then öα deÞned above is a solution to this
equation. Moreover for ∆n ≤ δn, the closest
integer smaller than öα, no crossing of the unit
circle occurs in the z-plane, and the closed loop
(22) is stable.

6. ILLUSTRATIVE EXAMPLE

The scalar system úx(t) = x(t) + u(t − 1) intro-
duced by Manitius and Olbrot (1979) has been
extensively studied in the literature.
As it is well known this unstable process in closed
loop with a SP is unstable, even when there is no
mismatch.
In the simulation results that follows, the design
parameters are a = 1, b = 1 and h = 1. When
the system parameters are known, we use a∗ = 1,
b∗ = 1 and h∗ = 1. When the system parameters



are uncertain, unless otherwise indicated, we as-
sume that a∗ = 1.1, b∗ = 1.1 and h∗ = 1.1.
As shown on Figures 4 and 5 the CRSP and the
DRSP stabilize the plant and they are robust.
The higher frequency of the resetting in the DRSP
allows indeed a softer response and control law.
The stability and robustness of the scheme are
indeed crucial, but from a practical point of view,
the reference following and disturbance rejection
are also important properties. Next, a simple mod-
iÞcation of the original scheme, consisting of an
adaptive gain allows zero steady state error and
disturbance rejection. This situation is illustrated
in Figure 6 for a unit step reference, and a dis-
turbance of a magnitude of 50% of the reference
occurring at time 20s.

Fig. 4: CRSP uncertain parameters (b∗ = 1)

Fig. 5: DRSP uncertain parameters.

Fig. 6: DRSP with adaptive gain

7. CONCLUDING REMARKS

The resetting technique introduced in Mondié et
al. (2001b) can be extended successfully to the
Smith Predictor in order to allow the stabilization
of unstable systems with delay in the input or in
the output. The discrete version of this scheme
leads to the Discrete Resetting Smith Predictor.
This discrete scheme allows a simple proof of
the stability of the scheme. The robustness with

respect to parameter and delay mismatch is es-
tablished. An important feature of the Discrete
Resetting Smith Predictor is that, as a Smith
Predictor, its design is done in two steps, namely,
the design of the controller ignoring the delay, and
the straightforward construction of an equivalent
controller for the delayed system. Moreover, a
discrete time version of this controller is of certain
interest in practical applications.
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