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Abstract: This paper deals with the problem of optimization of airline booking levels
for flights with several classes of passenger service and the scientific determination of
reservation policies. The dynamic and static models of airline data for determining
optimal reservation policies for airline booking process are presented. These models
make it possible to maximize the unconditional expected gain of the flight or to
minimize the unconditional expected value of loss and penalty. The numerical
examples are given. Copyright  2002 IFAC
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1. INTRODUCTION

A fundamental problem in the operation of airlines,
hotels and other enterprises where a highly perishable
product is to be sold at a definite time is the question
of reservations (Nechval, 1982, 1984). In the
literature, the following problem has been
considered. It is known that fully reserved airline
flights frequently depart with significant number of
unused seats because of “no-shows” (passengers who
fail to arrive for flight without notice) and passengers
who cancel seats just before departure (in the
knowledge that a refund of their fare will be made to
them), i.e. when the airline cannot get replacements
for them at such short notice. Many airlines seek to
compensate for such passenger losses by a policy of
deliberate overbooking. The airlines have recognized
the necessity of this practice, stating that through
“carefully controlled overbooking” they can reduce
the number of empty seats and at the same time serve
the public interest by accommodating more
passengers. The loss due to overbooking must be
balanced against the loss due to unused seats. Several
airline booking models have already appeared in the
literature. Beckmann (1958) published a model  (in
terms of Γ distributions) that balances the lost

revenue of empty seats with the costs to the airline of
passengers denied boarding  (as a result of alternate
transportation, airport dinners, hotel charges, lost
goodwill, etc.). This model yields the ‘booking
level’ or upper bound for reservations that minimizes
expected costs. The model of Kosten (1960) has the
same objective, but it provides for the interspersion
of reservations and cancellations (which Beckmann
ignores), and thus yields a booking level that depends
upon the number of days yet to transpire before
flight.  Kosten’s continuous time approach leads to a
set of simultaneous differential equations that must
be solved numerically, and the solution would
present serious computational difficulties in realistic
cases. Thompson (1961) developed a model to
provide booking levels that constrain the probability
of denied boardings. This model is quite different
from Beckmann’s and Kosten’s in that costs and
passenger reservation demands are omitted and only
the cancellation patterns of any fixed number of
reserved passengers are described. In Rothstein
(1971), the procedure of reservations is viewed as a
Markovian sequential decision process. Rothstein
(1985) gave a survey of the application of Operations
Research to airline overbooking. His article describes
significant contributions and implementations of
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Operations Research. In Alstrup, et al. (1986), an
overbooking model for a fixed nonstop flight with
two types of passengers is presented. The model
treats the airline booking process as a Markovian
nonhomogeneous sequential decision process. This
model is solved by two-dimensional stochastic
dynamic programming. In Ignaccolo and Inturri
(2000), a fuzzy approach to the overbooking problem
in air transportation is considered.

In the present paper, we consider the problem of
optimization of airline booking levels for flights with
several classes of passenger service. This problem is
one of the most difficult problems of air transport
logistics. On the one hand, one must have reasonable
assurance that the requirements of customers for
reservations will be met under most circumstances.
On the other hand, one is confronted with the
limitation of the capacity of the cabin, as well as with
a host of other less important constraints. The
problem is normally solved by the application of
judgment based on past experience. The question
arises whether or not it is possible to construct a
simple mathematical theory of the above problem,
which will allow one better to use the available data
based upon airline statistics. Two models (dynamic
model and static one) of airline data are proposed
here. In the dynamic model, the problem is
formulated as a sequential decision process. We
present an optimal adaptive reservation policy under
certainty, which is used at each stage (day) prior to
departure time for non-stop flights with several
classes of passenger service. The essence of
determining the optimal adaptive reservation policy
is maximization of the expected gain of the flight,
which is carried out at each stage prior to departure
time using the available data. The term (adaptive
reservation policy) is used in this paper to mean a
decision rule, based on the available data, for
determining whether to accept a given reservation
request made at a particular time for some future
date. An optimal non-adaptive reservation policy
under certainty is based on the static model. The
models of airline data proposed here contain a simple
and natural treatment of the airline reservation
process and may be appropriate in practice.

2. DYNAMIC MODEL OF AIRLINE DATA

The dynamic model of airline data, as presented here,
applies to a non-stop flight with several classes of
passenger service. Time t=0 corresponds to departure
time, t=1 is the index of the day of departure (stage
1), t=2 is the index of the day prior to departure
(stage 2), etc. A booking policy will be determined
for the span from departure time back to stage T.
Prior to day T all reservations are to be accepted. T is
determined from statistical and/or practical
considerations. Moreover there will be an integer nT

so large that the following assumption can be made
plausibly:  the  probability  of  having  more  than  nT

reservations booked prior to day T is zero.

Following are the probability distributions, variables,
and parameters of relevance for present purposes
when we deal with the mth class of passenger
service, m=1(1)M: pm,T(x) is the probability that x
passengers will already be booked on the morning of
day T, x=0, 1, … , nm,T; pm,t(y) is the probability of y
reservation demands during day t, t≥1, y=0, 1, …
,hm,t (hm,t is the maximum number of demands with
positive probability on day t, so that pm,t(y)=0,
y>hm,t); pm,t(z;x) is the probability of z cancellations
during day t out of x passengers already booked on
the morning of day t, z=0, 1, … ,x. This probability is
assumed independent of when the x passengers were
booked, which is the Markovian property. (The
validity of this type of assumption was established
for a very large data sample of passenger records by
researches at Latvian Airlines.) No-shows
(passengers with valid reservations who do not
appear by flight time) are to be included among the
cancellations on day 1; pm(s) is the probability of
having s standby passengers (passengers without
reservations who wait at the airport); c1(m) is the full
fare; c2(m) is the cost per denied boarding. We assume
that the cost of passengers denied boarding is
estimable and proportional to the number of such
passengers; um is the number of seats in flight for the
mth class of passenger service (airline booking level
for passengers of the mth category); wm is the
compactness factor giving some measure of the
airplane space need for performing a passenger
service of the mth class; U is the capacity of the
flight; rm,t(x) is the number of additional reservations
to accept on day t when x reservations are already
recorded, a decision variable for passengers of the
mth category. A set of values of rm,t(x) for all relevant
x and t is an overbooking policy for passengers of the
mth category. The maximum number of passengers
of the mth category who can be booked already by
the morning of day T has been defined as nm,T. If that
many were booked and no cancellations occurred on
day T, and if the maximum number of reservation
requests hm,T were made and accepted on day T, then
the number of passengers of the mth category booked
on the morning of day T-1 would be nm,T-1=nm,T+hm,T.
Similarly, by recursion, the maximum state of the
system for the mth class of passenger service for each
day t up to t=0 can be defined: nm,t=nm,t+1+hm,t+1, t=T-
1, T-2, … ,0. An overbooking policy is specified,
therefore, when rm,t(x) is specified for x=0, … , nm,t;
t=1, 2, … ,T; m=1(1)M.

2.1 Optimal Overbooking Policy
      Based on the Dynamic Model

The revenue from fares minus the costs of passengers
with reservations denied boarding because of
overbooking is a random variable, the gain, whose
probability distribution depends upon the particular
overbooking policy, chosen. Let Gm,t(um;x) be the



maximum expected gain achievable through booking
level um and any overbooking policy for passengers
of the mth category, given that x passengers are
already booked on the morning of day t≥1, and
Gm,0(um;x) be the expected gain when x passengers of
the mth category with reservations, plus any
standbys, arrive for flight. An optimal overbooking
policy for passengers of the mth category is defined
as one which produces Gm,t(um;x) for all x and t, and
it may be computed with the aid of dynamic
programming as in the Bellman-Howard process
(Howard, 1960). One begins by computing
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Next let Gm,t(r,um;x) be the expected gain from
passengers of the mth category when: (i) the booking
level is equal to um and the state on the morning of
day t is x passengers, (ii) the policy prescribes that up
to r additional reservations may be accepted (r≥0),
and (iii) an optimal overbooking policy is followed
thereafter. It follows that
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We have ignored the possibility that a passenger may
make a reservation and cancel it on the same day, but
without loss of generality. If the statistics indicate
that this phenomenon is significant for some
application, then subdivide some of the days into
smaller time periods.

The “principle of optimality” of dynamic
programming as formulated by Bellman (1957)
asserts that
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For t=1 and any fixed x, compute Gm,1(r,um;x) for
r=0,1, …., hm,1 and find the maximizing value,
rm,1(x), for each m∈{1, … ,M}. When this integer is
substituted for r in (2) the resulting value is

Gm,1(um;x). In case several values of r maximize
Gm,1(r,um;x), select the largest arbitrarily. (Consider
only the possibilities r=0, 1, … , hm,1, since hm,1 is the
maximum number of demands with positive
probability on day 1.) Thus recursively compute
rm,1(x) and Gm,1(um;x) for x=0, 1, …. ,nm,1, and then
rm,2(x) and Gm,2(um;x) for x=0, 1, …. ,nm,2, etc., until
rm,T(x) and Gm,T(um;x) have been determined for x=0,
1, … , nm,T and all m=1(1)M. The optimal
overbooking policy for passengers of the mth
category (with airline booking level um) maximizes
the expected gain conditional upon having x
passengers already booked on the morning of day t,
for every conceivable x and t. The unconditional
expected gain from such a policy is
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2.2 Optimal Booking Levels
      Based on the Dynamic Model

Let us assume first that an overbooked passenger of
the ith category is not willing to be transferred to an
empty seat for passenger of the jth category (i, j ∈{1,
… ,M}, i≠j). Then the problem is to find the
numerical maximum of the functional
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subject to constraints
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This problem can be treated by the functional
equation method of dynamic programming. Let
u=(u1, … ,uM) be a vector of airline booking levels
such that
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and let
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By applying for m=2, … ,M Bellman’s dynamic
programming optimality principle, we obtain the
basic recurrence relation
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u(1)=w1u1,  G1(u
(1))=G1(u1).

(11)
Thus,
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2.3 Numerical Example

Suppose we are making reservations for a flight to be
made at some date in the future. Plane capacity is
equal to U=10. There are two classes of passenger
service: the first (or business) class, where fare
c1(1)=1.1, the cost per denied boarding c2(1)=1.1, and
the second (or tourist) class, where fare c1(2)=1, the
cost per denied boarding c2(2)=1 ; w1=w2=1. Let T=10
be the number of days until departure. We let p(ym,t)
be the probability that  ym,t customers for passenger
service of the mth class (m=1, 2) will arrive during
day t (t=1, … ,10). For simplicity, we assume that the
arrival distribution is a binomial with parameters pm,t

and nm,t,
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where p1,t= p2,t=0.2, n1,t=n2,t=5 (∀t=1, … ,10).  In
practice, a Poisson distribution might be more
appropriate, but the binomial will serve our
illustrative needs. Again for simplicity, we assume
that each customer for passenger service of the mth
class (m=1, 2) who has a reservation at the end of
each day has the same probability ρm of canceling it
during the night. This leads us directly to a binomial
distribution for pm,t(z;x), the probability that z of the
x reservations at the end of a day will cancel during
the night,
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where ρ1=ρ2=0.1. It is assumed that the probability of
having s standby passengers (passengers without
reservations who wait at the airport), pm(s), is equal
to 1 for s=0 and m=1, 2. The essence of determining
the optimal overbooking policy is balancing the cost
of over-reserving and the cost of empty seats. The
balance depends, of course, on the uncertainties
associated with the arrival of new customers and of
cancellations. The optimal booking levels are given
by u1*=u2*=5. Table 1 gives the optimal overbooking
policy.

Table 1. Maximum levels of reservation

DayPassenger
Service Class

(m)
1 2 3 4 5 6 7 8 9 10

m=1, 2 5 6 6 6 7 7 7 8 8 9

3. STATIC MODEL OF AIRLINE DATA

It is assumed that we deal with a non-stop flight with
several classes of passenger service. Let us introduce
the following notation for the m-th class of passenger
service: x is the number of reservations accepted; y is
the number of reservations demanded; z is the
number of late cancellations and no-shows out of x
passengers with reservations; s is the number of
additional passengers (standby passengers) available;
Fy(m)(y) is the probability distribution function of y;
Fz(m)(z;x) is the conditional probability distribution
function of z; Fs(m)(s;x) is the conditional probability
distribution function of s; q1(m) is the loss per
unutilized seat; q2(m) is the penalty per excess
passenger; r is the sales limit (variable of an
overbooking policy, r≥um).

3.1 Optimal Overbooking Policy
      Based on the Static Model

We must now take into account the following: (1) if
x – z > um then are x – z – um excess passengers and
the penalty is q2(m)( x – z – um); (2) if x – z + s < um

there are um
 + z – x – s seats left and the revenue lost

is q1(m)( um+ z – x – s); (3) if x – z ≤ um ≤ x – z + s no
loss or penalty arises. Then, for a given number x of
reservations accepted the expected value of loss and
penalty, if an airline booking level for passengers of
the mth category is equal to um and the sales limit is
equal to r, is therefore
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for um ≤ y ≤ r (where x=y), and

)rx;u,r(Q mm =

)m(1

ur

0

)m(zm)m(2 q  )r;z(dF)uzr(q
m

∫
−

+−−=

)r;z(dF)r;s(dF)srzu( )m(z)m(s

rzu

0

m

r

ur

m

m

∫∫
−+

−

−−+×

(16)
for y > r (where x=r). The unconditional expected
value of loss and penalty is therefore
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This expression is to be minimized with respect to r,
where r≥um. Since the sales limit r will be differ little
from the booking level um, it may be argued that the
precise value of r does not matter in the above
conditional probability distributions, as it will be
very close to um. The probability distribution
functions with um substituted for r will now be
written Fs(m)(s) and Fz(m)(z). The condition of
optimality for r is that the derivative of (15) with
respect to r should be zero and it assumes then the
simple form
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Since the value of fz(m)(r), the probability density
function, for r late cancellations and no-shows is
quite small we have as a reasonable approximation
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which upon integration becomes
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(20) may be solved in terms of the proposed
oversales r – um. We conclude that the optimal value
of r does not depend on the demand distribution
Fy(m)(y).

3.2 Optimal Booking Levels
      Based on the Static Model

Let
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It is assumed that an overbooked passenger of the ith
category is not willing to be transferred to an empty
seat for passenger of the jth category (i, j ∈{1, … ,
M}, i≠j). Then the problem is to find the numerical
minimum of the functional
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This problem can be treated by the functional
equation method of dynamic programming. Let
u=(u1, … ,uM) be a vector of airline booking levels
such that
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and let
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By applying for m=2, … ,M Bellman’s dynamic
programming optimality principle, we obtain the
basic recurrence relation
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u(1)=w1u1,  Q1(u
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3.3 Numerical Example

Let the capacity of the flight be U=50 (An 24). There
are two classes of passenger service (M=2): the first
(or business) class, where q1(1)=4, q2(1)=10, w1=2, and
the second (or tourist) class, where q1(2)=1, q2(2)=10;
w2=1. Let
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where β1=β2=10,
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where γ1=γ2=10. The optimal solution is then given
as follows: for the first class, the optimal booking
level is u1*=16, the margin of admissible oversales is
equal to r−u1*=1; for the second class, the optimal
booking level is u2*=18, the margin of admissible
oversales is equal to r−u2*=1. In this case,
Q1,2(U)=0.044.

In practice the margin of admissible oversales is
chosen more or less arbitrarily from among the small
integers “on the basis of experience”. However, a
good policy in this respect cannot even be formulated
without openly facing and properly weighing all
implications. The lost revenue of a seat raises no
difficulties, it is simply the price of a ticket; what an
appropriate penalty for refusing a passenger should
be must remain a value judgment to be rendered by
the airline in the light of the “public relations”
sensitivity.

4. CONCLUSIONS

The mathematical models described in this paper
attempt to provide a consistent and valid approach to
optimization of airline booking levels. Simulations
and comparisons with existing simpler models from
airline companies seem to indicate that the decision
rules obtained from the above mentioned models
form an efficient operational tool in the planning of
an airline’s booking policy. Even though the two
models (static and dynamic) are very different they
gave very similar effectivity measures. The dynamic
model gave slightly better results, but it is relatively
difficult to put this model into practice. The
similarity in the results ought to underline the
validity of our dynamic model.
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