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Abstract: A new method of the feedback linearization procedure of MIMO systems
is developed. Some control variables are “sacrificed” and made equal to a linear
combination of new states. Subsequently the feedback linearization procedure is
carried out using the remaining control variables. The formal Lemma is stated and
proved. A class of non-linear systems is defined, for which the derived procedure
works well. The developed procedure works on plants, which are not feedback
linearizable in a standard way. An example of power plant station was examined.
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1. INTRODUCTION

The feedback linearization technique is one of
modern tools, which allows synthesising a control law
for smooth, continuous, non-linear systems. The basic
grounds of this theory are well established (Isidori
1995). Sufficient and necessary conditions for
feedback linearizability were given (Jakubczyk and
Respondek 1980), (Boothby 1986). In this classic
attitude the non-linear system is transformed to the
linear one with new signals selected as control
variables. Any control law can be adopted for these
control variables. A standard solution in this case is to
choose a static state feedback.

This paper is intended to broaden the class of MIMO
feedback linearizable systems. The plants are usually
not feedback linearizable because, the control signals
are too “close” to the output functions (in the sense of
relative degree). One of solutions in this case is to use
a dynamic extension. But it means that the order of
the plant is to be increased. On the other hand one
may think of “sacrificing” of some control signals.
They might be set to a constant value or simply
remain unused. This may lead to the loss of

controllability or at least to the deterioration of
control quality. But there is still another possibility.
Some of control variables might be adopted as a
linear combination of new states before linearization.
This idea is examined in detail in this paper. It
occurred that there exist classes of non-linear
systems, which are linearizable in this way, while
they are not linearizable by the standard procedure.
The price, which is to be paid for this possibility, is
that not all control laws can be adopted for given
control variables. For some of them it must be linear
combination of the states. It means that it is a static
state feedback – a common choice among control
engineers. However, this drawback is not too
restrictive.

In paper (Bolek and Sasiadek 2001) a similar problem
was examined. But the class of linearizable systems
was restricted to two input systems. And the
“sacrificed” control law could be a linear combination
of only two new states. The class of non-linear
systems derived in this paper allows that the
“sacrificed” control law can be a linear combination
of all new states.
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In paragraph 2 the idea of a new method is outlined.
In the next paragraph the formal Lemma is stated and
proved. A class of non-linear systems is defined, for
which the derived procedure works well. In paragraph
4, this method is applied to the model of a power
plant.

2. PRELIMINARIES

This section is intended to outline the main idea,
which constitutes the new method of feedback
linearization.

Let’s consider a non-linear smooth MIMO system (1).

( ) ( ) uBuxGxfx ++= ~~
�          (1)

x – n-dimensional state vector, uu~  - −m~ and

m - dimensional control signals.

New state variables ( )xΨ=Ψ  are chosen during the

linearization process. The main point of procedure
developed in this paper is that, before the
linearization, the one set of control inputs is adopted
as a linear combination of new states (2) (maybe
unknown at this moment).

Ψ= Ku           (2)

Now one should try to linearize (1) with (2). New
state variables Ψ are usually chosen as consecutive
time derivatives. This may cause that some of new
variables will be given by implicit relation. However
in some cases, those relations can be solved and the
new variables can be obtained in explicit form.

In paper (Bolek and Sasiadek 2001) a certain
structure (3) of a plant was found, where such attitude
is suitable.
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The following lemma was proved:

Let h be a smooth, nontrivial function of the first state
variable h = h(x1) and
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 with some coefficients k1, k2.
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(iii)  0)(1 ≠xrg  around x0

then the system (3) can be transformed around x0 to
the linear form:
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 - is a new control variable.

As it can be seen from (5), the possibility of control
signal u2 choice is restricted to only two variables.

In this paper a class of non-linear systems is found,
where there is no such restriction.

3. MAIN RESULT

A special structure (7) of non-linear, smooth system
(6) is considered.
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In this case the notations as shown in (6) are as
follows:
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area.

THEN

the system (7) is feedback linearizable in new co-
ordinates (9) with the feedback (10).
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with some matrices ( ) ( )mmnm ~KK ×× 21 .

Ψ⋅= Ku , where [ ]321 KKKK =  .
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v  - new m~ -dimensional control variable

The system has the form (11) after linearization.
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with Ψ= Ku  and v freely assignable.

PROOF

The time derivatives of the new co-ordinates will be
evaluated consecutively.

( ) Ψ++= KBxHxAx 0ψ�    (12)
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After some simple manipulations one obtains (13).
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If (9) is substituted for the second ψ1, one obtains
(14).

10 ψψ =�      (14)

The derivative of ψ1 is as follows (15).
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If the relation (10) is inserted, then one obtains:

v=2ψ� . (16)

Finally, the equation (12), (14), (16) constitute the
linearized system (11).

The assumption A1 is quite restrictive. It is adopted in
order to find solution for ψ1 in a simple way. If
relative orders would be greater than 2 then the
implicit relation for ψ1 include its partial derivatives.
One could consider a system, that partial derivatives
would not appear, but this idea needs some more
investigations.

4. EXAMPLE

The developed procedure is tested on a power plant
station model, which is described in more details in
(de Mello et al. 1991) and (Bolek et al. 2000).
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State variables are: x1 - power produced by the
turbine, e - error between nominal power Pz and
current power, pT - pressure before turbine, pD -
pressure in the drum, mw - steam flow produced by
the boiler. Control signals are: u1 - steam flow to the
turbine (related to the main valve opening), u2 - the
fuel flux delivered to the boiler. The other parameters
are constant coefficients. The state variables are
relative to the nominal values. They are always
positive. The difference γpD-pT must be positive,
because the steam flows from drum to the turbine and
not in the opposite direction.

The plant (17) can be described in the standard non-
linear form (6) with elements defined in (18), (19).

In this case these functions are defined as follows.
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The function f is smooth in the area of normal plant
operation.

The process of feedback linearization is quite
complex. In fact a special notation is used. The
interested reader should refer to the (Isidori 1995).
The necessary conditions for feedback linearizability
are that distributions G0=span{ g1, g2} and

{ }21211 ,,, gggg ff adadspanG =  have constant

dimension in the considered area of operation and
they are involutive.



The distribution G0 has a constant dimension, which
is equal to 2. It is also involutive because
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The distribution G1 has also a constant dimension,
which is equal to 4. But it is not involutive. The Lie
bracket [ ] 111 Gad ∉g,g f .

The plant (17) is not feedback linearizable in a
standard sense and there is no need to check other
conditions.

The plant (17) is in the form of (7).
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The assumptions of Lemma are to be checked now.

A1 The relative degree between ψ0 and u2 is equal
to 2. The related Lie derivatives are:
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(negative feedback for the linearized plant), then
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All assumptions of Lemma are fulfilled. The plant
(17) can be linearized in the described way.

The new co-ordinates are as is shown below
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The control u1 is a linear combination of new states
(20).
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On the other hand ψ1 is a time derivative of ψ0.
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The equation (21) is an implicit relation for ψ1 , but
formula (8) gives a solution for it.
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The u2 is evaluated accordingly to (10). However, this
formula is quite long and it is not shown in this paper.

Eventually, one obtains the plant in the form (11). Let
static state feedback be chosen for the control
variable v.

Ψ= Kv
~

The gain matrix 
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K
K ~  can be then computed e.g.

a as solution to the Riccati equation for the linearized
plant. Therefore, the adoption of control law (20)
before linearization, is not too restrictive for control



law structure. The restriction is only in that there in
not possible to choose a control law for u1 other than
state feedback.

5. CONCLUSIONS

A new method of the feedback linearization
procedure of MIMO systems was developed. Some
control variables are “sacrificed” and made equal to a
linear combination of new states. Subsequently the
feedback linearization procedure is carried out using
the remaining control variables. After linearization
the previously adopted linear combination of states
can not be changed. This restricts the set of possible
control laws, which might be adopted after
linearization. However, the linear combination of
states (static state feedback) is a common choice
among control engineers, and therefore this obstacle
could not be considered as very restrictive.

The “sacrificed” control variable is made a linear
combination of all states. This is a much broader
possibility, than in the previous result, where it might
have been a linear combination of only two states.

The developed procedure works in plants, which are
not feedback linearizable in a standard way. An
example of power plant station was examined. This
plant does not fulfil necessary condition to be
feedback linearizable, but it can be linearized using
developed procedure.

The result shown in this paper is a preliminary one.
The assumptions of Lemma are severe, but a more
detailed inspection of (7) can yield an even broader
class. However, so far, formal results were obtained
only for system as given in (7). Nevertheless, this
area has a great potential for further research work.
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