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Abstract: A new method of the feedback linearization procedure of MIMO systems
is developed. Some control variables are “sacrificed” and made equal to a linear
combination of new states. Subsequently the feedback linearization procedure is
carried out using the remaining control variables. The folreaimais stated and
proved. A class of non-linear systems is defined, for which the derived procedure
works well. The developed procedure works on plants, which are not feedback
linearizable in a standard way. An example of power plant station was examined.
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1. INTRODUCTION

The feedback linearization technique is one of
modern tools, which allows synthesising a control law
for smooth, continuous, non-linear systems. The basic
grounds of this theory are well established (Isidori
1995). Sufficient and necessary conditions for
feedback linearizability were given (Jakubczyk and
Respondek 1980), (Boothby 1986). In this classic
attitude the non-linear system is transformed to the
linear one with new signals selected as control
variables. Any control law can be adopted for these
control variables. A standard solution in this case is to
choose a static state feedback.

This paper is intended to broaden the class of MIMO
feedback linearizable systems. The plants are usually
not feedback linearizable because, the control signals
are too “close” to the output functions (in the sense of
relative degree). One of solutions in this case is to use
a dynamic extension. But it means that the order of
the plant is to be increased. On the other hand one
may think of “sacrificing” of some control signals.
They might be set to a constant value or simply
remain unused. This may lead to the loss of

controllability or at least to the deterioration of
control quality. But there is still another possibility.
Some of control variables might be adopted as a
linear combination of new states before linearization.
This idea is examined in detail in this paper. It
occurred that there exist classes of non-linear
systems, which are linearizable in this way, while
they are not linearizable by the standard procedure.
The price, which is to be paid for this possibility, is
that not all control laws can be adopted for given
control variables. For some of them it must be linear
combination of the states. It means that it is a static
state feedback — a common choice among control
engineers. However, this drawback is not too
restrictive.

In paper (Bolek and Sasiadek 2001) a similar problem
was examined. But the class of linearizable systems
was restricted to two input systems. And the
“sacrificed” control law could be a linear combination
of only two new states. The class of non-linear
systems derived in this paper allows that the
“sacrificed” control law can be a linear combination
of all new states.



In paragraph 2 the idea of a new method is outlined.
In the next paragraph the formammais stated and
proved. A class of non-linear systems is defined, for
which the derived procedure works well. In paragraph
4, this method is applied to the model of a power
plant.

2. PRELIMINARIES

This section is intended to outline the main idea,
which constitutes the new method of feedback
linearization.

Let's consider a non-linear smooth MIMO system (1).
x =f(x)+G(x)a+Bu 1)

x — n-dimensional state vectotd U - mM-—and
m - dimensional control signals.

New state variable$V = ll—’(x) are chosen during the

linearization process. The main point of procedure
developed in this paper is that, before the
linearization, the one set of control inputs is adopted
as a linear combination of new states (2) (maybe
unknown at this moment).

u=KW¥ )

Now one should try to linearize (1) with (2). New
state variablesV are usually chosen as consecutive
time derivatives. This may cause that some of new
variables will be given by implicit relation. However

in some cases, those relations can be solved and the

new variables can be obtained in explicit form.

In paper (Bolek and Sasiadek 2001) a certain
structure (3) of a plant was found, where such attitude
is suitable.
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The following lemma was proved

Let h be a smooth, nontrivial function of the first state
variableh = h(x) and
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then the system (3) can be transformed arowynid
the linear form:
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wherez =L7h, 7 =f +g,u, fori=1..r

v=L.h+ul, L h - is a new control variable.
1

As it can be seen from (5), the possibility of control
signalu, choice is restricted to only two variables.

In this paper a class of non-linear systems is found,
where there is no such restriction.

3. MAIN RESULT

A special structure (7) of non-linear, smooth system
(6) is considered.

X:f(x)+G(x)m (6)

xOR", udOR™,

(1)



0% O (Ksy U

2=0.0 3078 poa,
BH  HBaaf
o0 [0

U:%..S, G:S S m+m=m
HnE  Hmned

The constant matrices has following dimensions:
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In this case the notations as shown in (6) are as

follows:
AX+H Y, (x)0 B 00O
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The notationB = %Ewnl be also used.

LEMMA

IF

AlThe relative degree vector betweip (X) andU

0 D
is equal tdl2 2

m components B
A2 The matrixK3 (mx rﬁ) is chosen such that
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wherel - identity matrix.
A3 n=2m
A4 a(’gl( X)g G(x) is non-singular in the considered
X

area.

THEN

the system (7) is feedback linearizable in new co-
ordinates (9) with the feedback (10).
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v - new M-dimensional control variable

The system has the form (11) after linearization.
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with U =KW andv freely assignable.

PROOF

The time derivatives of the new co-ordinates will be
evaluated consecutively.

X =AX+Hy, (x)+ BKWY (12)
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After some simple manipulations one obtains (13).
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If (9) is substituted for the secong,, one obtains
(14).

o=y, (14)
The derivative oi} is as follows (15).
0, =2 [Ax + Hy, +BRW]+

ox (15)
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If the relation (10) is inserted, then one obtains:

Y=V,

Finally, the equation (12), (14), (16) constitute the
linearized system (11).

(16)

The assumptioAl is quite restrictive. It is adopted in
order to find solution fory; in a simple way. If
relative orders would be greater th&nthen the
implicit relation for ¢ include its partial derivatives.
One could consider a system, that partial derivatives
would not appear, but this idea needs some more
investigations.

4. EXAMPLE

The developed procedure is tested on a power plant
station model, which is described in more details in
(de Melloet al.1991) and (Bolelet al.2000).

T X, =—-%X +Uu,

T, =x - P,

T.6 =p; -1 (17)
CaPr = kyWp = Pr —U;

CDpD:mW_k Yo ~— Pt

Twmw = _mw + uZ

State variables arex; - power produced by the
turbine, e - error between nominal powd?, and
current power,py - pressure before turbingy -
pressure in the drunm, - steam flow produced by
the boiler. Control signals ara; - steam flow to the
turbine (related to the main valve opening),- the

fuel flux delivered to the boiler. The other parameters
are constant coefficients. The state variables are
relative to the nominal values. They are always
positive. The differenceypp-pr must be positive,
because the steam flows from drum to the turbine and
not in the opposite direction.

The plant (17) can be described in the standard non-
linear form (6) with elements defined in (18), (19).

In this case these functions are defined as follows.
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The functionf is smooth in the area of normal plant
operation.

The process of feedback linearization is quite
complex. In fact a special notation is used. The
interested reader should refer to the (Isidori 1995).
The necessary conditions for feedback linearizability
are that distributions Go=span{g;, g} and

G, =spafg,.g,,adg,,adg,}  have  constant

dimension in the considered area of operation and
they are involutive.



The distributionGy has a constant dimension, which
is equal ta2. It is also involutive because

99, _99, _

ox  0X

The distributionG; has also a constant dimension,
which is equal tat. But it is not involutive. The Lie
bracket[gl, ad, gl] 0G,.

The plant (17) is not feedback linearizable in a

standard sense and there is no need to check other

conditions.

The plant (17) is in the form of (7).
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The assumptions dfemmaare to be checked now.

Al The relative degree betweefy and u, is equal
to 2. The related Lie derivatives are:

L, W, =0 and

ky >0
2CDTW Wo — Pr
for positiveypp-pr.

ng Ly, =

A2 The coefficient Es has to be chosen in the way
that OL(X) B [923 £1.
ox

So, ky 2% ypp - p; . If ks is negative

(negative feedback for the linearized plant), then
this condition is fulfilled.

A3 n =2 =2m is obviously fulfilled.

Aa 005 - K £0
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All assumptions ofLemmaare fulfilled. The plant
(17) can be linearized in the described way.

The new co-ordinates are as is shown below
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The controlu; is a linear combination of new states
(20).
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On the other hang, is a time derivative ofy,.
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The equation (21) is an implicit relation fgr, , but
formula (8) gives a solution for it.
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Theu, is evaluated accordingly to (10). However, this
formula is quite long and it is not shown in this paper.

Eventually, one obtains the plant in the form (11). Let

static state feedback be chosen for the control
variablev.

v=KW¥

The gain matrixk = %Bcan be then computed e.g.
O

a as solution to the Riccati equation for the linearized
plant. Therefore, the adoption of control law (20)
before linearization, is not too restrictive for control



law structure. The restriction is only in that there in
not possible to choose a control law tgrother than
state feedback.

5. CONCLUSIONS

A new method of the feedback linearization
procedure of MIMO systems was developed. Some
control variables are “sacrificed” and made equal to a
linear combination of new states. Subsequently the
feedback linearization procedure is carried out using
the remaining control variables. After linearization
the previously adopted linear combination of states
can not be changed. This restricts the set of possible
control laws, which might be adopted after
linearization. However, the linear combination of
states (static state feedback) is a common choice
among control engineers, and therefore this obstacle
could not be considered as very restrictive.

The “sacrificed” control variable is made a linear
combination of all states. This is a much broader
possibility, than in the previous result, where it might
have been a linear combination of only two states.

The developed procedure works in plants, which are
not feedback linearizable in a standard way. An
example of power plant station was examined. This
plant does not fulfii necessary condition to be
feedback linearizable, but it can be linearized using
developed procedure.

The result shown in this paper is a preliminary one.
The assumptions dfemmaare severe, but a more
detailed inspection of (7) can yield an even broader
class. However, so far, formal results were obtained
only for system as given in (7). Nevertheless, this
area has a great potential for further research work.
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