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Abstract: This paper extends some results involving linear inner systems to the
nonlinear case. In this regard, the arithmetic of nonlinear inner systems is developed
further and some new connections with nonlinear spectral and all-pass factorization
and control theory are discussed. In particular, explicit formulas for the (state space)
realizations of nonlinear inner systems in terms of the components of extremal
spectral factors is provided. Relationships betw een inner systems and process coirol,
geometric control and H.,-con trol are also discussed.
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1. INTRODUCTION

In the linear setting, inner systems have been dis-
cussed in relation to invarian t subspaces (Rhrmann
and Gombani, 1998; Fuhrmann and Gombani,
2000) (all-pass and spectral) factorization prob-
lems (Finesso and Picci, 1982; Ferrartte, et al.,
1993; Petersen and Ran, 2001a,b,c,d) and control
theory (Ferran teet al., 1993; F uhrmann, 1995;
Fuhrmann and Gombani, 1998; F uhrmann and
Gombani, 2000; P etersenand Ran, 2001a,b,c,d).
In recen tcon tributionson inner-outer factoriza-
tion for nonlinear systems and the related subject
of the spectral factorization problem (Ball and
P etersen, 2002; Ball, et al., 2002; P etersen and
van der Schaft, 2001; Petersen and van der Schaft,
2002) it has become apparent that a more exten-
sive characterization of nonlinear inner systems
and its connection with nonlinear control theory
is required. In particular, in Ball and P etersen
(2002) a description of an inner system as part of
an inner-outer factorization was given in terms of
the smooth solution of a certain type of Hamilton-

Jacobi equation. Here the system was realized in
a manner which proves useful for the extension
of the arithmetic of nonlinear inner systems and
their factorization. In this paper, recen t results
(Ball and P etersen,2002; P etersenand van der
Schaft, 2001) are used to deriv e properties of
nonlinear inner systems and consider some con-
nections with control theory (Ball, et al., 2001).

Throughout this paper, the assumption is made
that the smooth nonlinear system is of the form

E:{x:
Yy

where a : R® - R™, b: R® — R™"™™, ¢: R"® —
RP and d : R™ — RP*™ is a smooth function (at
least C'). Suppose that p > m and that d(z) is
injectiv efor all z, where z = (z1,...,z,) € R"
are local coordinates for the n-dimensional state
space manifold M, with globally asymptotically
stable equilibrium zg = 0 for v = 0 (so a(zg) =
0 and c¢(zo) = 0). From this it follows that

a(z) + b(z)u, u € R™
c(z) +d(z)u, y € R? (1)



E(z) := d(x)Td(z) is invertible for each z. The
Hamiltonian extension of ¥ (where ¥ is given as
in (1)) has the form

(& = a(xg + b(gl))u,
b= ~[5 + o (@)ulTp
8(973:(: or otd (2)
2 e~
y = ¢(z) + d(x)u,
\ Ya = bT(x)p + dT(l‘)ua;

(Crouch and van der Schaft, 1987), where u,y, €
R™ and u, € R”. Imposing the interconnection
law u, = y in (2), it follows that the Hamiltonian
system is of the form

. H
T = a_p(wapa U)

e=[Dx]"o%:< p = T pu) (3

Ya = 8_u(map7 u)
with Hamiltonian function H (z,p,u) given by

H(z,p,u) = p" [a(z) + b(z)u] + (4)

S le(a@) + d(z)ul” [e(z) + d(z)u].
Here the state space is T*M, inputs u € R™,
outputs y, € R™. In this case ¥ is known as
a spectral factor of ®. Moreover, we make the
assumption that the not necessarily invertible
spectral system @ in (3) is weakly coercive if its
spectral factors are at least one-sided invertible. In
addition, from Petersen and van der Schaft 2002
it is possible to find explicit formulas for spectral
factors that are minimum and maximum phase. A
minimal realization of the stable, minimum phase
spectral factor ¥ _ is given by

& = a(z) + b(z)u
YKy = c(x) +b(x) (P, (2)! + Pu(2)") (5)
+d(z)u

where P~ is the smooth solution of the Hamilton-
Jacobi equation

P, (z)[a(z) = b(z)E~* (z)d" (z)c(z)]  (6)
5 Pr @) B @) Py (@) =0,
with P(0) = 0 and stability side condition
a(x) — b(x) B~ (z)d" (x)c(x)
~b(@) B~ (2)d" (2)b(x)" P, ()" (7)

is Lyapunov stable. A minimal realization of the
stable, maximum phase spectral factor X is given
by

& = a(z) + b(z)u
Siq ¥ = c@) +0(@) T (P (@) + Po(x)) (8)
+d(z)u

where PT is the smooth solution of the Hamilton-
Jacobi equation

Pf (w)la(z) — b(z)E~ (2)d" (z)c(z)]  (9)
~ S P @) B ()b(@) P () =0,

with P(0) = 0 and antistability side condition

(@) B~ (2)d" (z)c(x)

(2)d" (2)b(z)" P (2)"  (10)

Q
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8
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|
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is antistable.

From Petersen and van der Schaft, 2001 it is
possible to compute a nonsquare, stable nonlinear
system as

L e e
Rl V= E (d(ox) >Eux) ) (11)

where ¢ satisfies the equation

Se(@)elx)
—P,(2)[a(z) - b(z) B~ (z)d" (z)c(z)] (12)
+He(@)! + Po(@)b(@)] B~ (2)b(x) " Pe (2)"
+&(z)Te(x) = 0.
Moreover, if P is any solution of the Hamilton-

Jacobi equation (12) then there exists a map X
such that

dx) = =X, (2)" Po(2)" (13)

2. COLUMN AND ROW RIGID SYSTEMS

Concepts that are related to inner systems are the
idea of column rigid and row rigid systems. Con-
sider the Hamiltonian system ©70. (Hamiltonian
extension with u, = y) with Hamiltonian

Hw,p,u) = p'lale) + b)) (14)
+lee) +ulle(a) + ul.

Consider the observability function P¢ defined as

the solution of P?(z)a(z) + sc(x)Tc(x) = 0. and

define new coordinates p = p — P2(z). Then
H(z,p,u) = p" [a(z) + b(z)u] (15)

+ul [b(x)! P2 (2)T + c(z)] + %UTU.



Now, if P? satisfies P(z)b(z) + c¢(x)T = 0 then
the submanifold p = 0 is an invariant manifold,
and the system ©70,. restricted to this manifold
is given by the static input-output identity map
u — Y, = u. In this case the system O, is said
to be column rigid.

Next, consider the Hamiltonian system ©,0
(Hamiltonian extension with v = y,) with Hamil-
tonian

1
H(z,p,ua) = pa(@) + 5p"b(@)b(z)"p (16)
1
+pr(a:)ua + c(m)Tua + iuaTUa

Consider the controllability function P¢ defined
as the solution of

Pt(z)a(x) + $P:(z)c(z)c(x) PE(x)T = 0 and
define canonical coordinates p = p — PS(x). Then

H (2,5, u0) =P ale) + 57" )b ()"p

+P5(2)"b(2)b(2)" P
—Pi(x)" b= (17)

JUa

1
+c(x)u, + iuaTua.

Now, if P¢ satisfies P¢(z)b(z) + c¢(z)? = 0 then
the submanifold p = 0 is an invariant manifold,
and the system 0,0 restricted to this manifold
is given by the static input-output identity map
Ug — Y = Ug. In this case the system 0, is row
rigid.

The next proposition tells us that we can express
the rigid systems O, and O, in terms of smooth
solutions of the Hamilton-Jacobi equations (6)
and (9), respectively, and components of the state
space formula for (1).

Proposition 1. Suppose ® = [DR]! o R as in (3).

The minimal column rigid system satisfying R =
O, 0 X_ is given by

(& = a(m) — b(a})E*l w)dT(m)c(m)
— b(z)E~ (z)b(z)"
Tty

. + E_l T 2)0(x)u
AL
\ + (0) u

where P~ is the smooth solution of the (6) with
stability side condition (7).

The minimal row rigid system satisfying ¥, =
©, o R is given by

where PT is the smooth solution of the (9) with
antistability side condition (10).

PROOF. We can compute O, directly from R o
YL where R is given by (11) and £ =% is derived
from (5).

We note that R is left invertible with R~ being
derived from (11). We define P, = Ro E_T_L, where
Y, is given by (8). Also, we define @, = P¥, which
shows that ©, is rigid. Furthermore, we have to
show that ¥, = 0, o R. By using the first part
with R = O, 0 ¥_ we may conclude that

Yy =0,0P. 0%,
=0,0[Rox ox,
=0,00.08 oX;tox,
=0,00.,0%_
=0,0oR

In the linear case, the function ©j,cq, is said to
be row rigid if

®1in6a’l"®ikinear = I & p S m
and is column rigid if

el*inearelinear =1& p>m.

3. NONLINEAR INNER SYTEMS

Firstly, we provide a general description of a
nonlinear inner system. We assume that j is any
m X m signature matrix (j = j* = j~!) and J is
any p X p signature matrix (J = J* = J1).

Definition 2. A nonlinear system © is (j,J)-
inner (or (4, J)-stable conservative) if

e the vector field x — a(x) is stable (w.r.t.
assumed equilibrium point z = 0) and

e if there is a nonnegative-valued storage func-
tion P(z) with P(0) = 0 such that

P(x(tz)) = P((z(t)) =

12

(20)
; / [la®)12 = 11y (8)]12] dt

t1

over all trajectories (u(t),x(t),y(¢)) of the
system.



Alternatively, O is said to be (j,J)-inner if it is
lossless with respect to the Ly-gain supply rate

1. 1
s(u,y) = §uTJu - EyTJy-

The above characterization of nomnlinear (j,.J)-
inner systems from Ball and Petersen (2002), was
achieved within the dissipative systems frame-
work of Hill-Moylan-Willems (Willems, 1972; Hill
and Moylan, 1980). Here the dissipation equal-
ity in (20) may be derived from a state space-
implementation of the L,-gain condition in the
formulation of the nonlinear H.,-problem. Note
that the function defined in (20) may also be
thought of as a Lyapunov function (see Hill and
Moylan, 1980). If P is assumed to be smooth, the
energy balance relation (20) can be expressed in
infinitesimal form as

In fact, realizations for nonlinear invertible (j, J)-
inner systems may be expressed in terms of
smooth solutions of Hamilton-Jacobi equations as
follows

& = ax) + b( Ju,
0O: 22
U 2 B i, @
where u € R™, y € RP and P is a solution of the
Hamilton-Jacobi equation

Py (@)[a(z) — b(@) B~ (2)d" (2)e(@)]
+ L @)L, — d@) B @)d (2)]e(w)

2
=P (2)b@)E (@) (@)PL (2) = 0, (23)

or or

with P, (z) = (8—561(95), R %(x)> and P(0) =

0. The situation in which E is not invertible is
dealt with when we discuss the connection be-
tween nonlinear (j,J)-inner systems and nonlin-
ear optimal control in Petersen, 2001 (see also
Ball, et al., 2001). For ease of calculation, in the
sequel, we put j = J =d(z) = I.

In this section, we study the embedding of rigid
systems in inner ones. Before we proceed with
the statement of the first important result in this
section, we establish some notation to be used
in the sequel. Suppose that we wish to extend
a column rigid system O, given by (18) by an
appropriate column rigid system @Ic. This we do
in order to obtain a system O’ that is inner. On
the other hand, we wish to extend a row rigid
system ©, given by (19) by an appropriate row

rigid system @;, in order to obtain a inner system

Theorem 3. Suppose that P is a smooth solution
of the Hamilton-Jacobi equation (23). Then the
following hold.

Suppose that O, is a column rigid system as
given in (18), that is the interconnection ©0.
can be associated with the identity map. Then
there exists a column rigid system 9; such that
the inner extension ©' is given by

(& = a(z) — b(z)E (z)d (z)c(x)
b(fU)Efl(w)b(fU)T

(Py (@)" + Po(2)")
(-E- 1(fﬂ)dT( )b(z
_ (-d(fﬂ)E (z)b(z)

&(x)
()

where P~ is a smooth solution of the (6) with
stability side condition (7) and X~ satisfies (13).
Inner ©' and column rigid O, have the same drift-
dynamics vector field a.

@
+ X

)T Py (z)" )

<
|

Suppose that 0, is given as in (19), that is the
interconnection ©,0; can be associated with the
identity map. Then there exists a row rigid system
@;, such that extension ©" given by

= —a(z)" + c(z)Td(z)E~ (33) (@
+ (P () + Py(2))b(w ) Ha)b(x)"
O : —(P;r()b()_l() T(x) e@)" ) u (2

)
7
y:<d(x>E-1<x>b( ) (é )u

X (x)
is inner, where P* is a smooth solution of (9) with
stability side condition (10) and X satisfies (13).
Inner © and row rigid ©, have the same drift-
dynamics vector field a.

i T

PROOF. In order to prove this result we make
use of the description of row rigid and column
rigid systems given in Proposition 1 of Section 2.

It is clear that any minimal, inner extension of
column rigid O, given by (18) will be of the form
(24). Furthermore, by considering (23), (13) and
(9) we can check that the vector field © — a(z) —
ba)E (@) (z)c(a)~b(a) B~ (a)b(a)" (P, (z)" +
P, (z)T) is stable and that P, (z)T + P,(x ) sat-
isfies the energy balance relation given in (20).

The proof of the second part can be obtained
from the first part by ”duality” considerations. Of
course, any minimal, inner extension of row rigid
©, given by (19) will be of the form (25).

The results determined in this section are gen-
eralizations of the results obtained by Fuhrmann



and co-workers (Fuhrmann, 1995; Fuhrmann and
Gombani, 1998; Fuhrmann and Gombani, 2000)
to the nonlinear case.

4. CONNECTIONS BETWEEN NONLINEAR
INNER SYSTEMS AND CONTROL THEORY

4.1 Process Control

An application of the theory of nonlinear inner
systems to chemical process control was discussed
in Ball, et al. (2001). Here the inner-outer fac-
torization of noninvertible nonlinear systems in
continuous time is considered. Our approach is
via a nonlinear analogue of spectral factorization
which concentrates on first finding the outer factor
instead of the inner factor.

4.2 Geometric Control

In the linear case, Beurling’s Theorem suggests
that inner functions are intimately related to the
geometry of invariant subspaces in Hardy spaces.
In turn, this leads to many geometric relations
and is closely related to geometric control theory.
For instance, in observation problems the dual of
the disturbance decoupling problem (DDP), the
simplest application of geometric control theory
(Wonham, 1974) is the disturbance decoupling
estimation problem (DDEP), studied by Schu-
macher (Schumacher, 1979). In the problem of
disturbance decoupling by observation feedback
(PDDOF) one is compelled to study (A, B)- and
(C, A)-invariant subspaces simultaneously (Schu-
macher, 1979; Willems and Commault, 1991). A
characterization of these invariant subspaces is
given through a study of the operation of output
injection. Does one have an analogue of this in the
nonlinear case 7 Well, duality is not a notion that
carries over nicely to a nonlinear setting. However,
Isidori (2001) describes a new differential geo-
metric approach to the problem of detection and
isolation of faults that does not use the concept
output injection explicitly. The nice feature of his
work is that important elements of this differential
geometry may be exploited to consider a connec-
tion between the inner systems discussed in this
paper and nonlinear geometric control. This issue
is discussed in more detail in Petersen and van der
Schaft (2002).

4.3 Nonlinear H,,-Control

A number of papers have shown how a solution
of the H,,-control problem can be obtained from
a smooth solution of a Hamilton-Jacobi equa-
tion for the state feedback case (van der Schaft,

1992; James, 1993) or (at least locally) from
smooth solutions of a coupled pair of Hamilton-
Jacobi equations for the measurement feedback
case (Isidori and Astolfi, 1992a; Isidori and As-
tolfi, 1992b; Helton and James, 1999). Moreover,
in Ball and van der Schaft, 1996 a similar type
of result was established via a (j, J)-inner-outer
factorization procedure for the case of disturbance
feedforward. This was achieved within the dissi-
pative systems framework of Hill-Moylan-Willems
(Willems, 1972; Hill and Moylan, 1980). The
aforementioned framework has recently been gen-
eralized by James (James, 2001; also James, 1993)
to include L criteria and a mixed L*° and inte-
gral criteria. The generalized dissipation property
is characterized in terms of a partial differential
inequality (in the viscosity sense). These new re-
sults enables one to make connections with robust
control (mixture of L*°-bounded/integral robust
coutrol design). The solutions of the Hamilton-
Jacobi equations mentioned above need not be
smooth. In fact, there is a theory of viscosity
solutions (also sub- and supersolutions) which
has been very succesful in characterizing value
functions for optimization problems/games and
for storage functions. Thus James’ work becomes
important when studying the storage functions
that are associated with inner systems and there
relationship with nonlinear H.,-control.
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