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Abstract: This paper is dealing with the control of a rigid spacecraft. The nonlinear 
feedback controls, derived by using the approaches that have been recently developed, 
based on the port controlled hamiltonian (PCH) structure, are compared to the one 
derived by the methods based on the eigenstructure proposed by the author in previous 
work. The aim is to emphasize that, using the second approach appears as a particular 
case than using the first approach. Moreover, the results have been applied to derive 
the control laws of a launcher in the phase outside the atmosphere. It may be 
interesting to observe that the coefficients of the damping matrix, involved in PCH 
approach, have not the same effect on the system sensitivity. This paper somehow 
extends the related one presented by the author at the IFAC symposium in aerospace 
control. Copyright© 2001 IFAC.  
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1. INTRODUCTION 
 
In this paper, it is proposed a comparison between 
the nonlinear feedback control of a rigid body by 
using the approaches that have been developed 
very recently (Ortega, et al.,1999a; 1999b; Van 
der Shaft, 2000) and those that can be derived by 
using the eigenstructure theory presented by the 
author in previous work (Siguerdidjane, 91, 94). 
The first approach involves the port controlled 
hamiltonian structure while the second involves 
the desired analytical solutions for the system 
under consideration. Each approach presents its 
advantages and drawbacks.  
A similar procedure has been used to determine 
the feedback control laws of a launcher in the 
phase outside the atmosphere. 

 
The control of rigid body has always been of a 
great interest all over the literature research work. 
Several methods have been suggested (one may 
see for instance (Aeyles, 1992; Banks, et al., 
1997; Bloch, et al., 1990; Debs and Athans, 1969; 
Krshman, et al., 1992), (Siguerdidjane, 1991, 
1992a, 1992b, 1994), Sira-Ramirez and 
Siguerdidjane, 1996). One may also be referred to 
the basic solutions described in books as for 
example (Geensite, 70 ). Since, more and more 
performance are required by an industrial context 
subject to a great competitiveness therefore one 
has to make more research work in order to meet 
the desired improvements . 
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We are particularly focused on rigid body 
dynamics described by Euler equations since they 
are involved in our main problems of interest area 
by means of spacecrafts, missiles and launchers. 
In previous work, we have emphasized the 
connection between the analytical solutions of the 
Euler equations under no forces and under forces 
and some characteristic values and vectors. These 
values and vectors satisfy an algebraic non linear 
equation which may be derived using some 
algebraic manipulations.  
In references (Siguerdidjane, 1991, 1992-b, 
1994), it is presented the analytical solutions of 
the rigid body under three input control torques, 
two failure modes and one failure mode 
respectively. The solutions are expressed in terms 
of Jacobi elliptic functions and those 
characteristic values and vectors.  
 
It is here shown that the corresponding feedback 
laws are a particular case of the ones derived by 
shaping the stored energy of the system in the 
Port Controlled Hamiltonian approach.  
 
The use of a hamiltonian structure seems to be 
more significant from practical point of view. 
From theoretical point of view, it consists of 
conserving quantities and energy transfer and 
dissipation. Since also, one desires that the closed 
loop system possess a hamiltonian structure so 
then the feedback stabilizing control law is then 
derived. The theory based on the structure 
preserving stabilization is known as the so-called 
Interconnection and Damping Assignment, it has 
been developed by R. Ortega and his co-workers. 
 
One proceeds in three steps. First, fix a desired 
hamiltonian function. So then, the energy 
generated by the controller is provided through an 
added hamiltonian. Second, in order to get the 
expression of the added hamiltonian, one has to 
solve a partial differential equation satisfied by 
the added function.  For some systems, this is not 
always an easy task. Some applications have 
already been performed (Rodriguez et al., 2000a-
b). Concerning the rigid body, one may also find 
some feedback control laws in (Ortega, 2000). 
 
Third, the stabilizing feedback loop is derived by 
making equal the desired system dynamics and 
the original one. The stabilization is studied by 
taking the desired total hamiltonian as the 
Lyapunov function.   
The paper is organized as follows. The first 
section describes the vehicle dynamics and the 
procedure design. Section 2 is devoted to the 
control design by using the port controlled 
Hamiltonian structure. Section 3 presents the 
feedback laws though the desired analytical 

solutions of the system. Section 4 shows the use 
of the procedure to derive the feedback control 
laws of a launcher in the phase outside the 
atmosphere. Simulation results, discussion and a 
brief conclusion are given in the last sections. 
 
 
1.1 Vehicle dynamics 
 
Consider a rigid body in an inertial reference 
frame. Let us start with the satellite. Its dynamics, 
using reaction jets only, are described by Euler 
equations  
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where  and  denote the moments of 
inertia of the rigid body about the principal body 
axes,  and  denote the angular velocities of 
the satellite and T  and T  are the torques 
generated by the reaction jets. Assume that 
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1.2 Procedure design 
 
A system is said to be having a Port Controlled 
Hamiltonian structure if it can be presented in 
local coordinates as 
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where  is the state vector, ,  is the 
control vector, u , ,  is the 
internal Hamiltonian, ,  are the so-
called interconnection and the damping matrices 
respectively, with the appropriate dimensions. 
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The procedure consists of finding a modified 
Hamiltonian function , a modified 
interconnection matrix  and a modified 
damping matrix  and finally a feedback 
control  such that the closed loop system 
preserves the Port Controlled Hamiltonian 
structure 
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where ,  and  are the desired 
hamiltonian function, interconnection and 
damping matrices respectively, such that 
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Along the trajectories, one has  
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Moreover, one has to bear in mind that the aim is 
to reach the desired structure (4), the feedback 
control law is therefore derived by solving the 
following equation 
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Furthermore, it is necessary to guarantee that 
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equilibrium of the closed loop system. Moreover, 
the closed loop system is Lyapunov stable and the 
trajectories converge asymptotically to .  
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In addition, if  is a minimum of , then 
the Hessian of  is positive semi definite, 
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2. NONLINEAR FEEDBACK CONTROL 
 

Let us now back to the rigid body and first use, 
for convenience, the components of the angular 
momentum as the state variables. 
 
So define  such that 

,  and  and the control 

vector  such that , 
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System (1) may be rewritten down as 
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The Hamiltonian is given by the kinetic energy  
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Using equation (8), system (7) becomes 
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or in short 
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The objective is to possibly find simple 
expressions of the feedback control laws in order 
to facilitate their implementation as generally 
required in an industrial context. Consider the 
case where three control torques are acting on the 
body. 
 
This case has been studied by several authors (see 
for instance (Debs and Athans, 1969, 
Siguerdidjane, 1991), using the optimal control, 
by minimizing the kinetic energy. We here show 
that the solutions may be derived quite simply. 
 
We have , , , let us make no 
modification in the interconnection matrix and fix 
the damping matrix as follows  
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According to the preceding section, by using 
partial differential equation (6), the added 
Hamiltonian is found to be 
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k  is a constant which may satisfy a given 
condition in order to keep the system stable. 
Therefore using the added hamiltonian function 
leads to the feedback control laws 
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3. ANALYTICAL  SOLUTIONS OF THE 
ANGULAR MOMENTUM 

 
Up to now, it is quite difficult to find the analytic 
solutions using (11). Even though, in the 
particular case where 
 β=+=+=+ )()()( 332211 kkrkkrkkr , 
the analytical solutions of the angular momentum 
components are found to be : 
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where ,  and  are the Jacobi 
functions of pole .  is the so-called modulus 
of the Jacobi functions. ω  is an arbitrary 
constant, and i  is the imaginary number. 
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The 's are the components of the eigenvector  
of the closed loop system which has been seen to 
satisfy the nonlinear characteristic equation 
(Siguerdidjane, 91, 92, 94) 
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λ  denotes the eigenvalue associated to the 
eigenvector v . 
 
One may mention that, in some hard cases, it may 
happen that it is not quite straightforward to 
compute the involved added Hamiltonian 
function, so finding the analytic solutions should 
be an alternative way to solve the problem and 
vice versa. 
 
 

4. LAUNCHER DYNAMICS IN THE PHASE 
OUTSIDE THE ATMOSPHERE 

 
Let us now consider the mathematical model of a 
launcher in the phase outside the atmosphere. It is 
described by the following  differential equations  
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The vehicle is flying without propulsion, there is 
no aerodynamic coupling effect acting on the 
vehicle. 

qp,
z
 and  are the angular velocities about 

and  body axis respectively. and  are the 
pitch, yaw and roll angles respectively. 
and  are the control moments in pitch, yaw 
and roll respectively.  and  are actuation 
signals for control moments in pitch, yaw and roll 
respectively. 
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Let us here suppose that one desires the closed 
loop system to have a linear behavior, the 
solution should obviously be  
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From the theory of eigenstructure described in 
(Siguerdidjane, 94), it comes that 
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where  is the unknown function u  
evaluated in v . 
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By differentiating equation (15), using equations 
(16) and by entering the solutions into equations 
(14a) it comes out the linearizing feedback 
controls 
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5. SIMULATION RESULTS-DISCUSSION 
 
5.a- Spacecraft vehicle 
 
In order to perform simulations, the parameters of 
Spot 4 have been considered. , 

 and .  
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 in order to ensure the 
asymptotic stability (see Figs 1a-b). The  damping 
coefficients are being . 2,5 2 == r
The settling time depends on the choice of .  ir
The variation of  has more effect on the system  
than  and . The oscillations of the angular 
velocities may be observed for ,  
and r (see Figs 2a- 2b). 
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The system is shown to be not sensitive to large 
perturbations on  the moments of inertia values 
(see Fig 3 ). 
 
 

6. CONCLUSION 
 

In linear systems, the relationship between the 
damping coefficients and the overshoot is known. 
So, from the simulations below, it can obviously 
be observed that the system behavior is more 
sensitive to some coefficients than the others of 
the damping matrix. Our next goal would be the 
investigations in order to solve the whole system, 
by means of the attitude behavior and to establish 

a relationship between the overshoot and the 
damping of the nonlinear system. 
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Fig. 1a. Angular velocities vs time (s) 
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Fig. 1b. Control torques vs time (s) 
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Fig. 2a. Angular velocities vs time (s) 

30,10 231 === rrr  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

A
ng

ul
ar

 v
el

oc
iti

es
 in

 rd
/s

 
Fig. 2b. Angular velocities vs time (s) 
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Fig. 3. Angular velocities vs time (s) 

under large uncertainties  of  the moments of inertia 
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