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Abstract: This paper investigates a robot motion control problem with visual
information. Firstly the model of the relativ erigid body motion (positions and
rotations) and the method for the estimation of the relative rigid body motion are
presented in order to derive the visual feedback system. Secondly we consider the
velocit y observer and derive the dynamic visual feedback system which contains
the manipulator dynamics. Finally the main result with respect to stability for the
proposed dynamic visual feedback control is discussed.
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1. INTRODUCTION

Vision based control of robotic systems involves
the fusion of robot kinematics, dynamics, and
computer vision system to control the position of
the robot end-e�ector in an eÆcient manner. The
combination of mechanical control with visual
information, so-called visual feedback control or
visual servo, should become extremely important,
when w econsider a mechanical system w orking
under dynamical en vironments. Research e�orts
tow ardthis direction have been nicely collected
in the tutorial(Hutchinson et al., 1996).

This paper deals with a robot motion con trol
with visual information. This control problem is
standard and important, and has gained muc h
atten tion of researchers for many years (Wilson et

al., 1996; Hashimoto et al., 1997; Kaw abata and
Fujita, 1998; Maruyama and Fujita, 1999; Kelly
et al., 2000). The control objective is to track the
target object in a three-dimensional workspace by
using image information. The typical example is

sho wn in Fig. 1. Hence the dynamics of the visual
feedback system is described by the nonlinear
systems in a 3-D w orkspace. Underthe assump-
tion that the objects' depths are known, a simple
image-based controller for the 3-D visual feedback
system has been considered(Kelly et al., 2000).
In a recen t paper(Maruyama et al., 2001), the
authors ha veproposed the 3-D visual feedback
con trol which has guaranteed stability without the
kno wn objects' depths from the theoretical stand-
point. However few rigorous results have been
obtained in terms of the dynamic visual feedback
system which con tains a manipulator dynamics
in a 3-D workspace. Moreover the previous works
have assumed that the joint velocities of the ma-
nipulator can be measured directly.

In this paper, we discuss stability for the dynamic
visual feedback system in a 3-D w orkspace. In
order toderiv e the dynamic visual feedback sys-
tem, w ewill consider a relativ e rigid body mo-
tion dynamics and a nonlinear observer. Moreover
the velocit y observer which estimates the join t
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Fig. 1. Eye-in-hand visual feedback system.

velocities of the manipulator will be proposed.
The key idea of this paper is to utilize an error
function of the rotation matrix as a Lyapunov
function. The work presented in this paper ex-
tends our previous researches(Maruyama and Fu-
jita, 1999; Maruyama et al., 2001).

This paper is organized as follows. In Section 2, we
consider a model of the relative rigid body motion.
Section 3 presents a method for the estimation of
the relative rigid body motion. The main result
concerned with stability for the dynamic visual
feedback system considering the proposed velocity
observer is derived in Section 4. Finally, we o�er
some conclusions in Section 5.

Let a rotation matrix Rab 2 R3�3 represent
the change of the principal axes of a frame b

relative to a frame a. Then, Rab is known to
become orthogonal with unit determinant. Such
a matrix belongs to a Lie group of dimension
three, called SO(3) = fRab 2 R3�3jRabR

T
ab =

RT
abRab = I; det(Rab) = +1g. The con�guration

space of the rigid body motion is the product
space of R3 with SO(3), which should be denoted
as SE(3) throughout this paper (see, e.g. (Murray
et al., 1994)).

2. RELATIVE RIGID BODY MOTION

Let us consider the eye-in-hand system(Hutchinson
et al., 1996) depicted in Fig. 1, where the coor-
dinate frame �w represents the world frame, �c

represents the camera (end-e�ector) frame, and
�o represents the object frame, respectively. Let
pco 2 R3 and Rco 2 R3�3 denote the position vec-
tor and the rotation matrix from the camera frame
�c to the object frame �o. Then, the relative rigid
body motion from �c to �o can be represented
by (pco; Rco) 2 SE(3). Similarly, we will de�ne
the rigid body motion (pwc; Rwc) from �w to �c,
and (pwo; Rwo) from �w to �o, respectively, as in
Fig. 1.

The objective of the visual feedback control
is to bring the actual relative rigid body mo-
tion (pco; Rco) to a given reference (pd; Rd) (see,
e.g. (Hutchinson et al., 1996)). The reference
(pd; Rd) for the rigid motion (pco; Rco) is assumed
to be constant in this paper.

In this section, let us derive a model of the
relative rigid body motion. The rigid body motion
(pwo; Rwo) of the target object, relative to the
world frame �w, is given by

pwo = pwc + Rwcpco (1)

Rwo =RwcRco (2)

which is a direct consequence of a transforma-
tion of the coordinates(Murray et al., 1994) in
Fig. 1. Using the property of a rotation matrix,
i.e. R�1 = RT , the rigid body motion (1) and (2)
is now rewritten as

pco=RT
wc(pwo � pwc) (3)

Rco =RT
wcRwo: (4)

The dynamic model of the relative rigid body
motion involves the velocity of each rigid body.
To this aid, let us consider the velocity of a
rigid body(Murray et al., 1994). Let !̂wc and !̂wo
denote the instantaneous body angular velocities
from �w to �c, and from �w to �o, respectively.
Here the operator `^' (wedge), from R3 to the set
of 3�3 skew-symmetric matrices so(3), is de�ned
as

â = (a)^ :=

2
4 0 �a3 a2

a3 0 �a1
�a2 a1 0

3
5 ; a =

2
4 a1a2
a3

3
5 :

The operator `_' (vee) denotes the inverse opera-
tor to `^': i.e. so(3)! R3. With these, it is possi-
ble to specify the velocities of each rigid body as
follows (Murray et al., 1994)(Chap.2, Eq.(2.55)).

_pwc =Rwcvwc; _Rwc = Rwc!̂wc (5)

_pwo =Rwovwo; _Rwo = Rwo!̂wo: (6)

Di�erentiating (3) and (4) with respect to time,
we can obtain

_pco =�vwc + p̂co!wc +Rcovwo (7)

_Rco =�!̂wcRco +Rco!̂wo: (8)

Now, let us denote the body velocity of the camera
relative to the world frame �w as

Vwc := [vTwc !
T
wc]

T : (9)

Further, the body velocity of the target object
relative to �w should be denoted as

Vwo := [vTwo !
T
wo]

T : (10)

Then we can rearrange Eqs.(7) and (8) in a matrix
form as follows
(Relative Rigid Body Motion)�

_p

( _RRT )_

�
=

��I p̂

0 �I
�
Vwc +

�
R 0
0 R

�
Vwo:(11)

Here (p;R) denotes (pco; Rco) for short. Eq.(11)
should be the model of the relative rigid body
motion(Maruyama and Fujita, 1999).



3. ESTIMATION OF RELATIVE RIGID
BODY MOTION

The visual feedback control task should require
the information of the relative rigid body motion
(p;R). However, the available information that
can be measured in the visual feedback systems is
only image information. Hence, let us consider a
nonlinear observer which will estimate the relative
rigid body motion via image information.

We shall consider the following dynamic model
which just comes from the actual relative rigid
body motion (11).�

_�p

( _�R �RT )_

�
=

��I �̂p
0 �I

�
Vwc +

�
I 0
0 �R

�
ue(12)

where (�p; �R) is the estimated value of the relative
rigid body motion, and the new input ue for
the estimation is to be determined in order to
converge the estimated value to the actual relative
rigid body motion.

Next let us derive a pinhole camera model as
shown in Fig. 2. Let � be a focal length. Let poi

Σc
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λ
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Fig. 2. Pinhole camera model.

and pci be coordinates of the target object's i-th
feature point relative to �o and �c, respectively.
Then, from a transformation of the coordinates,
we have

pci = p+Rpoi: (13)

The perspective projection of the i-th feature
point onto the image plane gives us the image
plane coordinate as follows

fi =
�

zci

�
xci
yci

�
(14)

where pci := [xci yci zci]
T . It is straightforward

to extend this model to the n image points case
by simply stacking the vectors of the image plane
coordinate, i.e. f := [fT

1
� � � fTn ]T 2 R2n.

Now, we de�ne the estimation error between the
estimated value (�p; �R) and the actual relative rigid
motion (p;R) as

(pee; Ree) := (p� �p; �RTR): (15)

Note that, if p = �p and R = �R, then it follows
pee = 0 and Ree = I . Let the matrix sk(R) denote
1

2
(R�RT ) and let

eR(R) := sk(R)_ (16)

represent the error vector of the rotation matrix
R. Then the vector of the estimation error is given
by

ee :=
�
pTee eTR(Ree)

�T
(17)

where ee = 0 holds when pee = 0 and Ree = I .

Next, we will derive the measurement equation
from Eqs.(13) and (14). Suppose the estimation
error is small enough that we can let Ree ' I +
sk(Ree), then Eq.(13) becomes

pci = �pci � �Rp̂oieR(Ree) + pee (18)

where �pci := �p + �Rpoi. Using Taylor expansion,
Eq.(14) can be written as

fi = �fi +

2
664

�

�zci
0 ���xci

�z2ci

0
�

�zci
���yci

�z2ci

3
775 (pci � �pci) (19)

where �pci = [�xci �yci �zci]
T and �fi :=

�
�zci

[�xci �yci]
T .

An approximation of image information f around
the estimated value (�p; �R) is given by

f � �f = J(�p; �R)ee (20)

where the matrix J(�p; �R) is de�ned as

J(�p; �R) :=

2
6664
L(�p; �R; po1)
L(�p; �R; po2)

...
L(�p; �R; pon)

3
7775 (21)

L(�p; �R; poi) :=

2
664

�

�zci
0 ���xci

�z2ci

0
�

�zci
���yci

�z2ci

3
775 �I; � �Rp̂oi

�
:(22)

Note that the matrix J(�p; �R) can be considered as
the image Jacobian(Hutchinson et al., 1996).

The following assumption will be made.

Assumption 1. For all (�p; �R) 2 SE(3), the matrix
J(�p; �R) is full column rank.

Remark 2. Under Assumption 1, the relative rigid
body motion can be uniquely de�ned by the image
feature vector. Moreover it is known that n > 4 is
desirable for the visual feedback systems.

The above discussion shows that we can derive
the vector of the estimation error ee from image
information f and the estimated value of the
relative rigid body motion (�p; �R),

ee = Jy(�p; �R)(f � �f) (23)

where y denotes the pseudo-inverse.
In the next section, Eqs.(12) and (23) will be
exploited in order to estimate the relative rigid
body motion.



4. DYNAMIC VISUAL FEEDBACK
CONTROL

4.1 Dynamic Visual Feedback System

Let us derive a model of the visual feedback sys-
tem. First, we consider the manipulator dynamics
as

M(q)�q + C(q; _q) _q + g(q) = � (24)

where q, _q and �q are the joint angles, velocities
and accelerations, � is the vector of the input
torques. The matricesM(q) and C(q; _q) have some
important properties which will be used in the
sequel.

Property 3. By de�ning C(q; _q) using the Christof-
fel symbols, _M(q) � 2C(q; _q) is skew-symmetric.
Furthermore, for this choice C(q; _q) satis�es

C(q; x)y =C(q; y)x 8x; y (25)

C(q; z + �x)y =C(q; z)y + �C(q; x)y 8x; y (26)
where � is scalar.

Property 4. The matrices M(q) and C(q; _q) are
bounded with respect to q,

0 < Mm �kM(q)k �MM 8q (27)

kC(q; x)k �CMkxk 8q; x (28)

where we de�ne the norm of a vector x as

kxk =
p
xTx: (29)

The norm of a matrix A as

kAk =
q
�max(ATA) (30)

where �max denotes the maximum eigenvalue.

Here we consider the body velocity of the camera
Vwc. Since the camera is mounted on the end
e�ector of the manipulator, the body velocity of
the camera Vwc is given by

Vwc = Jb(q) _q (31)

where Jb(q) is the manipulator body Jacobian
(Murray et al., 1994). Before formulating the
visual feedback control problem, we make the
following assumption.

Assumption 5. The manipulator has 6 degrees of
freedom, and the manipulator Jacobian Jb(q) is
the nonsingular matrix.

Under Assumption 5, Eq.(31) can be transformed
into

_q = J�1b (q)Vwc: (32)

Henceforth, we de�ne the reference of the joint
velocities as follows

_qd := J�1b (q)uc: (33)

where uc represents an ideal body velocity of the
camera, which will be proposed later.

Let us de�ne the error vector with respect to the
joint velocities of the manipulator dynamics as

� := _q � _qd: (34)

Now, we consider the velocity observer approach
(Berghuis and Nijmeijer, 1993) in order to esti-
mate the joint velocities. Here we propose the
control law as the input torques and the velocity
observer for the dynamic visual feedback system
as follows.

Controller

8<
:

� = M(q)�qd + C(q; _q0) _qd
+g(q) + u�

_q0 = _�q � �~q
(35)

Velocity
Observer

�
_�q = z + Ld~q
_z = �qd + Lp~q

(36)

where [�qT zT ]T is the observer state, �q denotes
the estimated velocities, � = �T > 0, Ld =
LTd > 0, Lp = LTp > 0. The new input u� is
to be determined in order to achieve the control
objectives. Moreover, ~q is de�ned as

~q := q � �q (37)

which represents the error between the actual
joint angles and the estimated joint angles. The
following assumptions will be made.

Assumption 6. �, Ld and Lp are constant and
diagonal. Moreover, Ld and Lp can be written as

Ld = ldI +�; Lp = ld�

where ld > 0 is scalar.

Assumption 7. The desired velocities _qd are bounded
by VM , i.e.,

VM = sup
t

k _qd(t)k: (38)

Here we consider the error dynamics of the manip-
ulator. Substituting Eq.(35) into Eq.(24) yields

M(q)(�q � �qd) =�C(q; _q)( _q � _qd)

+C(q; _q0 � _q) _qd + u� (39)

where Property 3 has been used. From Eqs.(34)
and (39), we have

M(q) _� = �C(q; _q)� � C(q; s) _qd + u� (40)

where s is de�ned as

s := _q � _q0 = _~q +�~q: (41)

Next we derive the observer error dynamics. Un-
der Assumption 6, we have

�q0 � �qd = lds: (42)

From Eqs.(40){(42), the observer error dynamics
can be written as



M(q) _s=�M(q)lds+ C(q; s� _q)�

�C(q; _q)s+ u�: (43)

Next, we de�ne the control error as follows.

(pec; Rec) := (�p� pd; �RR
T
d ) (44)

represents the error between the estimated value
(�p; �R) and the reference of the relative rigid body
motion (pd; Rd). It should be remarked that, if
pd = �p and Rd = �R, then pec = 0 and Rec = I

hold. Using the notation eR(R), the vector of the
control error is de�ned as

ec :=
�
pTec e

T
R(Rec)

�T
(45)

where ec = 0 gives pec = 0 and Rec = I .

From Eqs.(12) and (44), the dynamics of the
control error can be given by�

_pec
( _RecR

T
ec)

_

�
=

��I �̂p
0 �I

�
Vwc +R1ue (46)

where R1 = diagfI; �Rg.
Further, we consider the dynamics of the esti-
mation error. Using Eqs.(11), (12) and (15), the
dynamics of the estimation error can be obtained
as follows�

_pee
( _ReeR

T
ee)

_

�
=

�
0 p̂ee
0 0

�
Vwc � ue +R2Vwo (47)

where R2 = diagfR;Reeg.
Using Eqs.(40), (43), (46) and (47), the visual
feedback system can be derived as follows

M(q) _� =�C(q; _q)� � C(q; s) _qd + u� (48)

M(q) _s=�M(q)lds+ C(q; s� _q)�

�C(q; _q)s+ u� (49)2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775=

2
664
�I �̂p
0 �I
0 p̂ee
0 0

3
775 Jb(q)� +

�
0
R2

�
Vwo

+

2
664
�I �̂p I 0
0 �I 0 �R
0 p̂ee �I 0
0 0 0 �I

3
775
�
uc
ue

�
:(50)

Eqs.(48) and (49) represent the manipulator dy-
namics with the velocity observer. Eq.(50) denotes
the relative rigid body motion with the nonlinear
observer.

4.2 Stability of Dynamic Visual Feedback Control

Let us de�ne the error vector of the dynamic
visual feedback system as

x :=
�
�T sT eTc eTe

�T
:

Then the dynamic visual feedback control prob-
lem can be formulated as follows.

Problem 8. Find a input vector u = [uT� uTc uTe ]
T

such that the closed-loop system satis�es the
control objectives as follows: (Internal stability)
If the target object is static, i.e. Vwo = 0, then
the equilibrium point x = 0 for the closed-loop
system is asymptotically stable.

We propose the following dynamic visual feedback
control law

u� =�K�(� � s)� JTb (q)B(pd)ec (51)�
uc
ue

�
=�

�
Kc 0
0 Ke

� ��B(pd) 0

RT
1

�I
�
e (52)

where K�, Kc and Ke are 6 � 6 positive de�nite
matrices. B is de�ned as

B(a) =

�
I 0
â I

�

for any a 2 R3. The error vector e is de�ned as

e :=
�
eTc eTe

�T
:

Remark 9. The control input u contains the error
vectors �, s, ec and ee. � and s cannot be realized,
whereas the di�erence �� s can be obtained from
known signals, i.e., ��s = _�q��~q� _qd. ec is derived
from the nonlinear observer. And ee can also be
obtained from Eq.(23). Hence we can exploit the
dynamic visual feedback control law u.

Now, let us de�ne

Kce :=

�
BT (pd) �R1

0 I

� �
Kc 0
0 Ke

��
B(pd) 0

�RT
1

I

�

KJ(q) := (JTb (q)B(pd))
T (JTb (q)B(pd)):

Moreover, for any matrix A(x) = AT (x) > 0 and
for all x, Am and AM represent the minimum and
maximum eigenvalue of A(x), respectively.

Using Property 4 and Assumptions 6, 7, the result
with respect to asymptotic stability for the closed-
loop system can be established as follows.

Theorem 10. Suppose that the following condi-
tions hold.

K�;m >CMVM (53)

ld >M�1
m (K�;M +

1

2
+ CMVM ) (54)

Kce;m >
1

2
KJ;M (55)

If Vwo = 0, then the equilibrium point x = 0 for
the closed-loop system (48)-(52) is asymptotically
stable. Moreover, a region of attraction is given
by

D=

�
x 2 R24

��� K�;m

CM

� VM > ksk;
2ldMm � 2K�;M � 1

2CM

� VM > k�k
�
:(56)



PROOF. Consider the following positive de�nite
function

V =
1

2
�TM(q)� +

1

2
sTM(q)s+

1

2
kpeck2

+�(Rec) +
1

2
kpeek2 + �(Ree) (57)

where � is the error function of the rotation ma-
trix. We refer to Appendix A for the error function
on SO(3). Di�erentiating (57) with respect to
time along the trajectories of the system (48)-(52)
yields

_V =��TK�� � eTKcee

�sT �ldM(q)�K� � C(q; �)
�
s

�sTC(q; �)� � sTC(q; _qd)�

��TC(q; _qd)s� sTJTb (q)B(pd)ec (58)

where Property 3 has been used. Next, using
Property 4 and Assumption 7, Eq.(58) can be
upper bounded by

_V ���K�;m � CM (VM + ksk)�k�k2
��ldMm �K�;M � 1

2
� CM (VM + k�k)�ksk2

��Kce;m � 1

2
KJ;M

�kek2: (59)

Hence _V is negative on D � f0g. This completes
the proof. 2

In the proof of Theorem 10, the positive de�nite
function V plays the role of a Lyapunov function.
In this section, we have obtained the rigorous
result with respect to stability of the dynamic
visual feedback system in a 3-D workspace. L2-
gain performance analysis for the visual feed-
back system has been discussed in the previous
works(Maruyama and Fujita, 1999; Maruyama et

al., 2001). Further one of the experimental results
of the visual feedback control has been presented
by the authors(Kawabata and Fujita, 1998). In
future work, dynamic visual feedback control will
be discussed based on our recent result of the non-
linear receding horizon control approach(Kawai
and Fujita, 2001).

5. CONCLUSIONS

This paper has discussed the dynamic visual feed-
back control which contains the manipulator dy-
namics from the theoretical standpoint. By using
the representation of SE(3), we have derived the
relative motion dynamics. The nonlinear observer
has been employed in order to estimate the rel-
ative rigid body motion. Furthermore, we have
proposed the velocity observer with the aim of
obtaining the joint velocities. Stability for the
dynamic visual feedback system considering the
proposed velocity observer has been discussed.
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Appendix A. ERROR FUNCTION ON SO(3)

Let us introduce the notation of the error function

�(R) :=
1

2
tr(I �R): (A.1)

The error function � has the following properties
(Bullo and Murray, 1999).

Property 11. Let R 2 SO(3). The following prop-
erties hold.

(1) �(R) = �(RT ) � 0 and �(R) = 0 i� R = I:

(2) _�(R) = eTR(R)(R
T _R)_ = eTR(R)(

_RRT )_:


