
INCREASING STABILITY IN DYNAMIC GAITS USING
NUMERICAL OPTIMIZATION

Michael Hardt Oskar von Stryk

Simulation and Systems Optimization Group, Technische Universität
Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany

Email:
���������
	���
�	�����������
�������	������������ 
!	��
��	"����#��	�	
$&%('�'*)�)�)"�+
����,�-�!.�/�0����1�*	1�2����	����������2� 
2	�����	"�3��#

Abstract: Optimal gait planning is applied in this work to the problem of improving stability
in quadruped locomotion. In many settings, it is desired to operate legged machines at high
performance levels where rapid velocities and a changing environment make stability of
utmost concern. Since gait planning still remains a vital component of legged system control
design, an efficient method of determining periodic paths is presented which optimize a
dynamic stability criterion. Efficient recursive multibody algorithms are used with numerical
optimal control software to solve the minimax performance stability criteria.

Keywords: walking, path planning, dynamic stability, robot dynamics, optimization
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1. INTRODUCTION

Legged locomotion systems are characterized by very
nonlinear dynamics of high dimension, and it is a com-
plex task to generate and control stable gaits for such
systems. There are two general gait classifications,
namely static gaits and dynamic gaits. While static
gaits have only a kinematic measure of stability and
can result in very slow forward movement, dynamic
gaits have a much wider range of motion. Dynamic
gaits are consequently much harder to control, and
their stability harder to measure. For this purpose, the
tools of numerical optimization can provide an objec-
tive means for evaluating a given stability measure. In
addition, on-line and calculational considerations must
be made. Numerical optimization techniques which
have previously been used for periodic gait generation
are implemented here for this purpose.

Static stability can be measured from the system’s
kinematic configuration. As introduced by (McGhee
and Frank, 1968), the static stability margin (SM) is
the shortest distance between the projected center of
mass of the system and the boundaries of the support
polygon formed by the convex hull of the supporting

feet. This can also be divided by the center of mass
height (SI = SM/h) to additionally penalize a larger
potential energy. A significant improvement to this
index is the energy stability margin from (Messuri
and Klein, 1985). This stability index measures the
energy required to tip a system over one of the edges
in its support polygon or equivalently the change in
potential energy to rotate the system, assuming the
system behaves as an inverted pendulum, to bring
the center of mass over the support boundary. The
principal defects of static stability measures, though,
are that they do not take into account velocity, inertial
effects, and the influence of the swinging legs and their
future ground contact.

For many-legged systems, primarily those with six or
more legs, static stability is often sufficient as gaits
may be selected such that three or more legs are
in contact with the ground. For quadrupeds, this is
particularly restrictive so that dynamic stability is of
greater importance. Any attempt to exploit the in-
creased dexterity of biped or quadruped systems or to
emulate their biological counterparts requires operat-
ing in regimes where static stability is not feasible.
A description of the popular method of quantifying
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dynamic stability using the zero moment point (ZMP)
may be found in (Vukobratović et al., 1990) which
remains a widely used measure. There it is pointed
out that two very different forms of measuring dy-
namical stability correspond to measuring either pos-
tural or gait stability. The ZMP belongs to the class
of postural stability measures which ensure that the
system configuration remain within a specified region
of state space, yet as argued in (Goswami, 1999) this
measure has its defects since the ZMP is constrained to
lie within the ground support polygon. As the system
becomes unstable, this point will lie on the boundary
of the support polygon and thus provide little infor-
mation as to the amount of instability. Additionally,
many interesting gaits exist for quadrupeds which have
only one-dimensional support polygons. Further work
in (Koo and Yoon, 1999) used the angular momentum
to define a stability index about the support edges. In
contrast to previous approaches, this method can pro-
vide both directional information and a reference sta-
bility quantity that can be used for measuring postural
stability/instability while considering system kinetics.
Though not a rigorous measure for the stability of a
dynamical system, such a measure provides a means
to monitor the stability of walking systems on-line and
additionally can treat non-periodic gaits, a necessity
when the terrain is rough or there exists obstacles. For
this reason, this is the principal measure used later in
the numerical investigations.

A measure of gait stability when considering periodic
gaits employs Floquet theory from nonlinear system
theory which can be used to investigate the local
stability of critical points of discrete maps. A stability
analysis of human walking data was conducted in
(Hurmuzlu and Basdogan, 1994) using this approach.
In recent work (Mombaur et al., 2001), the maximum
eigenvalue of the monodromy matrix, the Jacobian of
the periodic map, is minimized to compute open-loop
stable passive trajectories for a simple planar biped.
These methods still remain difficult to apply to a full-
dimensional quadruped model due to the nonconvexity
of the optimization and are not suited for on-line
calculations, gait transitions, or non-periodic gaits.

We explore in this paper an optimization approach
based on a discretization of the control problem and
its subsequent formulation as a nonlinear optimiza-
tion problem which has successfully been applied
for gait planning in bipeds without model simplifi-
cations in two dimensions (Hardt et al., 1998) and
for quadrupeds in (Hardt and von Stryk, 2000). The
measure of dynamic stability employed by (Koo and
Yoon, 1999) for legged systems is studied here using
a complete three-dimensional model of the quadruped.
The system is optimized using a minimax objective to
maximize the minimum stability during the gait cycle.
The calculations are made more efficient with the use
of a reduced multibody dynamics algorithm without
making any model simplifications and the application
of an efficient optimal control method based on a di-

rect collocation transcription and a sparse sequential
quadratic programming algorithm.

2. QUADRUPED LOCOMOTION

2.1 Quadruped Dynamic Model

Table 1. Physical data of quadruped model

Body Thigh Shank
m (kg) 37.6 3.7 2.15
Ixx (kg 4 m2) 1.60 0.003 0.001
Iyy (kg 4 m2) 3.40 0.03 0.01
Izz (kg 4 m2) 4.30 0.03 0.01
length (m) 0.72 0.29 0.29
distance to CM (m) 0 0.146 0.032

The quadruped model considered here consists of a 9-
link tree-structured multibody system with a central
torso and 4 two-link legs. Each leg contains a 2 dof
universal joint in the hip and a 1 dof rotational joint in
the knee. The links are modeled with a uniform density
of mass. The physical data used in the experiments can
be found in Table 1 and are based on the quadruped
walking machine Warp1 (Ridderström et al., 2000). A
minimum set of coordinates consists of 36 continuous
states 5 q 5 t 6�7 v 5 t 6(6 and 12 control variables u 5 t 6 which
include the Bryant Euler angles and global position of
the torso body, the angular and linear velocity of the
torso body, and the three angles and their velocities
for each leg. The generalized velocities v must not
necessarily equal the time derivative of the generalized
positions q as is the case with the torso orientation
where v contains the angular velocity of the torso.
When evaluating the time derivative of the Bryant an-
gles, a kinematical transformation must first be per-
formed from the torso angular velocity. The remaining
velocities though are equal to q̇.

The equations of motion are those for a rigid, multi-
body system experiencing contact forces

q̇ 8 k 5 v 6
v̇ 8 M 5 q 6:9 1 ; u < C 5 q 7 v 6�< G 5 q 6�= Jc 5 q 6 T fc > (1)

where k is a kinematic transformation, M is the
square, positive-definite mass-inertia matrix, C is the
vector of Coriolis and centrifugal forces, G is a vec-
tor of gravitational forces, u 5 t 6 are the control input
functions, Jc is the constraint Jacobian, and fc is the
constraint force. The ground contact constraints repre-
sent holonomic constraints on the system gc 5 q 6�8 0.
The constraint Jacobian has the form Jc 8 ∂gc

∂q while
the vector fc may also be interpreted as Lagrange mul-
tipliers.

The multibody equations of motion are computed us-
ing recursive O 5 N 6 multibody algorithms based on
the work in (Rodriguez et al., 1991) and which have
evolved into an object-oriented multi-faceted com-
puter package (Helm et al., 2002). It is well-known
that recursive algorithms are more efficient in their
dynamics calculations for systems with more than 7



or 8 degrees of freedom than alternative approaches
which involve assembling the entire mass-inertia ma-
trix. Other multibody dynamics algorithms are perhaps
better suited for smaller systems or where they may ex-
ist a larger number of interior kinematic closed-chains.

2.2 Gait Classification and Constraints

When formulating the periodic constraints and the
constraints for jumps in the state velocities at the col-
lision events during a periodic gait, one must know
in advance the discrete sequence of such events. For
a biped, this is not a problem as one need only dis-
tinguish between walking and running. The range of
different quadruped gaits, however, can be quite large.
The problem of searching over all possible gaits in
a gait optimization problem has not yet been com-
pletely solved (Hardt and von Stryk, 2000) yet biolog-
ical studies can provide a good indication as to which
quadrupedal gaits are the most efficient for different
forward velocities (Alexander, 1984). A numerical ad-
vantage for considering gaits with the left and right
legs of a pair with equal duty factors is that the prob-
lem can be completely formulated within half a gait
cycle. The fixed duty factor of β 8 0 ? 5 is used in the
numerical investigations. All other gait parameters are
optimized.

The inelastic collision of a leg with the ground in-
troduces an impulsive force to the system which in
turn produces a discontinuous jump in the generalized
velocities. The jumps in the velocities may similarly
be computed with efficient O 5 N 6 recursive algorithms
(Hardt et al., 1998).

2.3 Reduced Dynamics

The dynamics for walking machines are particularly
well-suited for using reduced-dynamics algorithms
free of algebraic constraints due to the relative ease
with which the inverse kinematics problem may be
solved in the case of a leg experiencing contact. For
example, using the quadruped model previously de-
scribed with a 2 dof hip joint and 1 dof knee joint,
all of the states corresponding to a leg experiencing
contact are dependent upon the torso states. They may
be solved for uniquely given merely the hip position,
hip linear and angular velocity, and its ground contact
position.

This approach, also known as coordinate partitioning
(Ascher and Petzold, 1998), solves for a reduced set of
independent states from (1) thus converting the DAE
contact system into an ODE system of minimal size.
This method requires solving the inverse kinematics
problem for the dependent states which, in the case of
legged systems, are generally the contact leg states.
For most leg configurations, this problem is easily
solved using knowledge of the relative hip and foot

contact locations. This approach is not an approxi-
mation to the dynamics but rather a more efficient
computational method.

Define a change of variables for the position states

r1 8 Zq 7 r2 8 i 5 r1 6@? (2)

The transformation Z ACB"D N 9 l E xN is a constant matrix
consisting of unit vectors or 0 chosen such that r1 are
the independent states. The closed-form inverse kine-
matic solution for the dependent states is calculated
with the function i 5GFH6 . Partitioning the constraint veloc-
ity equation Jcv 8 0 with respect to the independent v1

and dependent velocity states v2, Jc I 1v1 = Jc I 2v2 8 0,
provides a change of variables for the velocity states

s1 8 Zv 7 s2 8J< J 9 1
c I 2 Jc I 1s1 ? (3)

Introducing these quantities into (1) and multiplying
by Z then gives an ODE of size 5 N < l 6

ṡ1 8 ZM 9 1 ; Ru < C < G = JT
c fc > ? (4)

The principal advantage of this approach is that one
may calculate the equations of motion using the full
state, yet one need only perform the optimization on
the reduced dimensional state. The state must then be
monitored such that it remain within a well-defined
region of the state space. In Section 3.1, where the
optimal amble gait is investigated for a quadruped,
there are always two legs in contact. As a result,
instead of the full 36 states 5 q 7 v 6 , 24 states describe
the system.

The state equations (1) are of reduced dimension and
of variable structure since the form of the reduced state
will depend on the contact condition. We introduce
an additional discrete state variable ci associated with
each leg that describes the ground contact condition of
the ith leg at time t:

ci : K 0 7 t f L�M �
1 7 2 � 7 i 8 1 7(?:?(?(7 4

ci 5 t 6N8PO 1 7 no contact or swinging phase
2 7 fixed contact phase

(5)

Then the dynamics of the legged system have the
general variable structure form:

v̇ 5 t 6Q8SRTTU TTV
f1 5 q 5 t 6�7 v 5 t 6�7 c 5 t 6�7 u 5 t 6�7 p 7 t 6�7 t AWK t0 7 tS I 1 L 7
fk 5 q 5 t 6�7 v 5 t 6�7 c 5 t 6�7 u 5 t 6�7 p 7 t 6�7

t AWK tS I k 9 1 7 tS I k L 7 k 8 2 7(?(?:?(7 m < 1
fm 5 q 5 t 6�7 v 5 t 6�7 c 5 t 6�7 u 5 t 6�7 p 7 t 6�7 t AXK tS Im 9 1 7 t f L 7(6)

where the discrete state c 5 t 6 is constant in each phaseK tS I i 7 tS I i Y 1 L . In Section 3.1, where the optimal amble
gait is investigated for a quadruped, there are always
two legs in contact. As a result, instead of the full 36
states 5 q 7 v 6 , 24 states can describe the system.

2.4 Performance Specifications and Dynamic Stability

In (Koo and Yoon, 1999), an approach was presented
for measuring the dynamic stability of a quadruped



based on the angular momentum. The main features
of this measure is that it is an instantaneous mea-
sure which can be applied at any moment during the
gait unlike those based on the Floquet multipliers and
which are only applicable to periodic gaits. It differs
from previous approaches in that the momentum of
the swing legs are also taken into consideration. It is
however limited to gaits with at least two legs in con-
tact with the ground. Various simulations of dynamics
gaits were conducted in (Koo and Yoon, 1999), and it
was demonstrated how the stability index can effec-
tively be used in closed-loop in addition to indicating
how several gait parameters influence gait stability.
The work presented here involves the generation of
dynamically stable gaits and will be primarily based
on the stability index of (Koo and Yoon, 1999). The
planning of gaits is an important part in the control
design of dynamic gaits, particularly when gaits are
desired which are far from being statically stable as
no closed-loop controllers exist which can guarantee
dynamic stability under all conditions.

The gait stability measure in (Koo and Yoon, 1999) is
computed as

SH 8 min
�
Sl

H 7 l 8 1 7(?(?:?(7 nl

�
(7)

where nl is the number of edges in the support poly-
gon. The stability values Sl

H for each edge depend on
whether the edge is a diagonal or non-diagonal edge.
The linear and angular momentum of the system about
the system center of gravity CG are denoted as LCG

and HCG respectively. These values can be used to
compute the the angular momentum about a point P
on the ground using the transformation HP 8 HCG =
rPICG Z LCG where rPICG is the vector from P to CG.
When P lies on the edge connecting two support legs,
the rotational tendency about that edge is

Hl 8[5 HCG = rP,CG Z LCG 6�F êl (8)

where êl is the unit vector along edge l. The reference
angular momentum H ref

l about edge l is defined as the
minimum angular momentum to tip over the edge if
the system were an inverted pendulum

H ref
l 8\5 rl,CG Z mtotalvref 6�F êl ? (9)

Here rl,CG is the orthogonal vector from the edge l to
CG and mtotal is the total system mass. The reference
velocity vector vref is computed from the kinetic energy
required to attain the higher potential energy at which
the system CG would lie above edge l. The difference
in potential energy from the current position to the
point of instability is the same as the energy stability
margin given in (Messuri and Klein, 1985)

mtotal 5 g ] rl,CG ] cosψl < gT xCG 6 (10)

where g 8[K 0 0 g L T is the vector of gravitational force.
Then for a non-diagonal edge Sl

H 8 H ref
l < Hl.

In the case of a diagonal edge, the maximum angular
momentum is additionally defined:

Hmax
l 8\5 rl,CG Z mtotalvmax

tip 6�F êl (11)

where vmax
tip is the maximum velocity vector of the

swing leg’s tip. If only two legs are in contact, then
when the CG has not yet crossed the diagonal edge
then Sl

H 8 min ^ Hl < H ref
l 7 Hmax

l < Hl _ , and if it has
crossed Sl

H 8 Hmax
l < Hl. In the case of a third support-

ing leg behind the diagonal edge Sl
H 8 Hmax

l < Hl, and
if the supporting leg lies in front then Sl

H 8 H ref
l < Hl.

An overall gait stability measure may also be con-
structed from the above when dealing with a periodic
gait by defining it to be the minimum value of SH over
the entire gait cycle or its integrated value. As stability
is more of a risk criterion than a cost criterion, the
minimum value formulation is used in the subsequent
analysis.

3. NUMERICAL OPTIMIZATION

It is demonstrated how the optimal gait planning prob-
lem of maximizing the minimum value of the stabil-
ity index can be framed as a nonlinear programming
problem which may then be solved using efficient
optimization software. In addition, current comput-
ing technology makes the optimization of a complete
three-dimensional dynamical model of a quadruped
possible within a reasonable amount of time.

The method of sparse direct collocation (von Stryk,
1995) is used to approximate the states x 8`5 q 7 v 6 and
controls u of the optimal control problem along the
subintervals t AaK t j

k 7 t j
k Y 1 L of a grid tS I j 9 1 8 t j

1 b t j
2 bF(F:F b t j

nG c j 8 tS I j in each phase ,

ũapp 5 t 6d8 β 5 û 5 t j
k 6�7 û 5 t j Y 1

k 6(6�7 β < linear
x̃app 5 t 6e8 α 5 x̂ 5 t j

k 6�7 x̂ 5 t j Y 1
k 6�7 f j

k 7 f j
k Y 1 6�7 α < cubic

(12)

where f j
k 8 f j 5 x̂ 5 t j

k 6�7 û 5 t j
k 6�7 p 7 t j

k 6 . The infinite-dimen-
sional optimal control problem is thereby converted
to a finite-dimensional constrained nonlinear program
containing the unknown values for x 7 u 7 p 7 tS I i 7 t f . The
problem is then solved using an SQP-based optimiza-
tion code for sparse systems SNOPT (Gill et al., 1998).
It is equipped to handle general nonlinear equality and
inequality constraints on the states and controls includ-
ing magnitude bounds, multiple phases with switching
dynamics, jumps in the states and controls, and objec-
tives with continuous and discrete costs (von Stryk and
Glocker, 2001). The method is thus equipped to handle
the complexities of the walking problem: unknown
liftoff times, different ground contact combinations for
the legs, discontinuous states at collision times of the
legs with the ground, switching dynamics, and actua-
tion limits.

The desired performance is the min-max criterion:

J K u L 8 min
0 f t f t f

SH 5 t 6g< M max! (13)

Similar to the optimal windshear control problem
solved in (Bulirsch et al., 1991), by adding an addi-
tional control parameter p1 to the problem, the min-



max problem may be transformed to a standard form
of Mayer-type objective:

p1 : 8 min
0 f t f t f

SH 5 t 6
where an additional inequality constraint is needed,

SH 5 t 6�< p1 h 0 7 0 i t i t f

and the transformed objective becomes J̃ K u 7 p L 8J< p1.

This objective maximizes the minimally attained level
of postural stability during the dynamic gait. The gait
stability though must be measured by other means. A
post-processing of the calculated solutions is the most
feasible manner of accomplishing this. Nonlinear dy-
namical systems theory dictates that the gait stability
of periodic systems may be determined by the eigen-
values (Floquet multipliers) of the sensitivity matrix
(monodromy matrix) between the final state values
x 5 t f 6 and the initial state values x 5 0 6 of the optimal
control problem. The eigenvalues are equivalent to
the linearized Poincaré map and indicate asymptotic
stability when they are less than unity. The matrix
calculation however requires an accurate calculation of
the sensitivities to the contact dynamics, constraints,
and boundary conditions and thus represents a com-
putational hurdle. This important validative approach
will be incorporated into future work.

3.1 Numerical Experiments

Fig. 1. The quadruped walking machine Warp1 of
(Ridderström et al., 2000).

The numerical experiments were conducted using the
model data from Table 1 based on the quadruped walk-
ing machine Warp1 (Ridderström et al., 2000) (Figure
1). The optimization requires a set of starting values
(rather than an arbitrary set) to begin the iteration pro-
cedure. Due to the complexity of the model, a reason-
able set of starting values is required for the optimiza-
tion to converge to a solution. This can be done in a
number of ways. One is to use heuristic arguments to
determine the state position paths and feet placement
locations, desired forward velocities to determine the
state velocities, and desired ground forces with inverse
dynamics to calculate a set of control inputs. An alter-
native is to calculate a series of optimal solutions for
subproblems. The latter approach was the one taken
here where first the problem was solved in two dimen-
sions with most parameters fixed, then all constraints

were gradually relaxed using the previous solution to
start the subsequent problem. Optimization run times
for a single subproblem ranged from 5 to 20 minutes
on a Pentium III, 900 MHz PC.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60
Stability measure during optimal gait

time

S
H

Fig. 2. Stability index SH for optimized gait of a
quadruped moving forward at 0.67 m/s and duty
factor β 8 0 ? 5 based on a full three-dimensional
dynamical model.

The solution displayed is for a desired forward velocity
of 40 m/min or 0.67 m/s. The optimal gait stride is
0.416 m and the gait period is 1.25 seconds. The only
gait parameter fixed during the optimization is the
duty factor of β 8 0 ? 5 while other parameters such
as average forward velocity, relative phases or step
size have been optimized as well. Figure 2 shows
the evolution of the optimized stability index SH over
one gait period. A negative value of SH indicates an
unstable configuration while the more positive SH is,
the more stable the system. The large variations in the
index are caused by the changing of support legs in
the robot. The gait displayed is an amble gait between
walking and running with the legs having a duty factor
of β 8 0 ? 5 which is a demanding, fast-moving gait.
The order of support leg order is (LF-LB, LR-RR,
RF-RR, RF-LR: LF=left front, RR=right rear) so that
the system alternates between having two support legs
on one side and diagonal support legs. The steepest
drop in SH occurs when the system switches from a
side pair of support legs to a diagonal pair. At that
point the angular momentum of the system about the
diagonal edge is slightly greater than the required
angular momentum for the CG to “roll over” the
diagonal edge and not fall backward. A conservative
value of 2 m/sec was chosen for the attainable velocity
of the swing leg tip vmax

tip .

Ongoing numerical investigations test these methods
for different gait classifications, combine them with
trajectory tracking control laws, compare with alter-
native energy-based performances, validate them with
full 3D dynamics simulations including different dis-
turbances such as slipping and tripping before final
implementation. It is planned to validate the numer-
ical results in experiments in cooperation with KTH
Stockholm (Ridderström et al., 2000).



3.2 Experimental Results

Fig. 3. The four-legged Sony robots used in our group
for robot soccer competition (RoboCup).

Another immediate application of the current work
is in the design of fast and stable walking strategies
of the four-legged Sony robots used for RoboCup
soccer competition in our group (Figure 3). Here,
energy efficiency is not important since the robot’s
battery can be replaced frequently, but fast and stable
motions are most important for the performance in a
competition. Compared with the previous four-legged
robot dynamic model a main difference is not the
overall size but the relatively heavy head which also
must be considered.

4. CONCLUSION

The present work extends recent results in optimal gait
planning to the important case of maximum gait stabil-
ity. In many settings, this criterion can be of primary
importance such as when obstacles must be avoided,
energy concerns are less of a problem, or moving at
a high velocity is desired. The investigated dynamic
stability criterion is well suited to a changing envi-
ronment and on-line stability assessment for closed-
loop control design. Efficient recursive multibody al-
gorithms combined with efficient numerical optimal
control software solve the minimax performance sta-
bility criteria.
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Longman (2001). Human-like actuated walking
that is asymptotically stable without feedback. In:
IEEE International Conference on Robotics and
Automation. pp. 4128–33.

Ridderström, C., J. Ingvast, F. Hardarson, M. Gud-
mundsson, M. Hellgren, J. Wikander, T. Wadden
and H. Rehbinder (2000). The basic design of the
quadruped robot Warp1. In: Int’l Conf. on Climb-
ing and Walking Robots (CLAWAR). pp. 87–94.

Rodriguez, G., K. Kreutz-Delgado and A. Jain (1991).
A spatial operator algebra for manipulator model-
ing and control. International Journal of Robotics
Research 40, 21–50.

von Stryk, O. (1995). Numerische Lösung optimaler
Steuerungsprobleme: Diskretisierung, Parame-
teroptimierung und Berechnung der Adjungierten
Variablen. VDI-Verlag, Düsseldorf. Fortschritt-
Berichte VDI, Reihe 8, Nr. 441.

von Stryk, O. and M. Glocker (2001). Numeri-
cal mixed-integer optimal control and motorized
traveling salesmen problems. APII – JESA (Jour-
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