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Abstract: A method for unknown input estimation in nonlinear stochastic system is
presented. A key problem in bioprocess systems is the absence, in some cases, of reliable
on line measurements for real time monitoring applications. In this paper, a software
sensor for an anaerobic digester is presented. Unmeasured components of the influent are
estimated from available on line measurements. Based on a multiple model scheme, a
bank of unknown input Kalman filters are discussed to estimate a probabilistic weighting
state and unknown input of the process. The performances of the method are tested in
simulation using a validated model of an anaerobic fixed bed pilot plant.
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1. INTRODUCTION

One of the most frequent and important challenges in
the control of chemical and biochemical processes is
to find adequate and reliable sensors to measure key
variables of the plant. However, if a number of
sensors providing direct real time measurements of
the state variables are today available at the industrial
scale, they are still very expensive and their
maintenance is usually time consuming, especially in
the field of chemical and biological processes.
Furthermore, biological processes are highly non-
linear systems and their kinetic parameters are
usually badly or poorly known. To overcome these
difficulties, the notion of software sensors has been
introduced. In fact, these software sensors consist in
using state estimation techniques to reconstruct time
evolution of the unmeasured states from the available
on-line measurements. Besides the extended Kalman
filter, several approaches have been proposed since
the early eighties. Some approaches are based on
linearization methods (Nicosia et al., 1986). Other
approaches are sliding observers based on the theory
of variable structure systems, (Walcott and Zak,
1986) or based on the set theoretic approach for
linear systems where the unknown nonlinearities are
considered either as bounded (Misawa and Hedrick,

1989), or as system perturbations (Hou and Muller,
1994). These methods have been successfully applied
to biological and chemical processes (Bastin and
Dochain, 1990; Farza et al., 1998). In the stochastic
case, some results have been obtained for optimal
unknown input decoupling purpose (Aubrun et al.,
2001) around an operating point. This paper is
concerned with the design and application on an
anaerobic digestor of a bank of Kalman filters for
software sensor purpose. The process is represented
by an interpolated discrete linear time invariant
model obtained from mass balance equations of the
anaerobic digestor.

The paper is organised as follows. Section 2 presents
a general theory and the design procedure to estimate
the unmeasured input applied to a nonlinear system
described by a set of interpolated linear time
invariant models. The section 3 is devoted to the
dynamical model development of the considered
anaerobic wastewater treatment process. In the next
section, the simulation results of the considered
process are then shown and commented. Based on
the nonlinear model of the system and the simulation
measurements, the unknown inputs are estimated in a
wide range of variations. Finally, concluding remarks
are given.
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2. UNMEASURED INPUTS ESTIMATION

Consider a discrete nonlinear system described by
the following discrete state space representation:
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where nX ℜ∈  is the state space, pU ℜ∈  is the

input vector, qD ℜ∈  is the unknown input vector;
mY ℜ∈  is the output vector; nW ℜ∈  (respectively
mV ℜ∈ ) represents the plant noise vector

(respectively the measurement noise vector), ( ).F

and ( ).G  are smooth nonlinear functions.

Let us assume that the nonlinear system (1) can be
modeled as a set of linear systems around z operating
points. Each operating point is defined by a couple of
input-output measurements defined as:

[ ]( )z1i,X,U,Y 0i0i0i �∈∀ . A linear stochastic

state space representation is associated with each
operating point described by the following form:

i
k

i
ki

i
k

i
k

i
ki

i
ki

i
ki

i
1k

vxCy

wdHuBxAx

+=

+++=+
(2)

where ( )iiii H,C,B,A  are the system matrices,
nix ℜ∈  is the state vector, piu ℜ∈  is the control

input vector, qid ℜ∈ is the unknown input vector

and miy ℜ∈  is the output vector around the ith

operating point. It is assumed that

( ) mCrank,i i =∀ and ( ) qHrank i = . iw  and iv  are

independent zero mean white noise sequences with
covariance matrices iQ  and iR  around the ith

operating point ( [ ]z1i �∈∀ ).

The dynamic of the system in exactly z operating
points is known and span the entire range of
operating zone of the nonlinear plant (Johansen et al.,
1998).

Based on this assumption, model validity functions
i
kmvf  can be used to evaluate the validity of each

linear model such that:

1mvf i
k →  : when the ith model satisfactorily

describes the behavior of the non linear system

0mvf i
k →  : otherwise
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 which implies that as the nonlinear

system moves onto an operating point where one of
the z models becomes more trustworthy than the
others, the other models lose their validity.
The probability for each of the assumed models is
calculated as a function of the actual and estimated
measurements. Then the model considered at sample
k is determined as the conditional mean value among

all the set of z models. The maximum likelihood
estimate is the value which has the highest
probability. The implementation of the procedure is
realised by means of a bank of Kalman linear filters.

This bank is used to estimate the state i
kx̂ and outputs

i
kŷ  and generate a residual vector i

k
i
k

i
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around the ith operating point. The residuals of the
considered filter, around the corresponding operating
point, follow a Gaussian distribution. Then assuming
stationarity property of the residual, the probability

distribution function, noted i
kpdf , is defined as:
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where i
kΩ  defines the covariance matrix of the

residuals i
kr .

Based on the probability distribution function, a
mode probability, noted i

kproba , can be calculated

applying Bayes theorem [ ]z1i �∈∀  (Banerjee et al.,

1995):
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The model validity functions, i
kmvf , are computed

by using (eq 4). Therefore, the probability estimation
algorithm can get locked onto one model so that the
probability converges to one, while the one
associated to the other models converges to zero. The
mode probabilities, i

kproba , are used to isolate the

actual operating point.
Following the approach developed by (Maybeck,
1999), a non linear system can be approximated by a
finite number of interpolated linear time invariant
models through the generation of probabilistically

weighted state estimate vector, X̂ ,
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The mode probability calculation is based on the
residual generation. A classical estimation procedure
is carried on for each of the z assumed linear time
invariant models as:
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where ix̂ and iŷ  denote the state and output

estimation vectors around the ith operating point

( [ ]z1i �∈∀ ). iK  represents the gain of the ith

Kalman filter.



From equations (2) and (6), the estimation error
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The output residuals are corrupted by effects of
unknown inputs and are not zero-mean value
although the ith model exactly matches the non linear
system. According to the operating regimes, the use
of a model set in the estimation algorithm results in a
poor performance in the presence of unknown inputs.
In order to generate some residuals sensitive to
operating points and insensitive to unknown inputs,
considered as faulty inputs, a bank of full-order
Kalman filter with unknown inputs is proposed
(Keller, 1999). Compared to other approaches
(Darouach et al., 1995), the full-order Kalman filter
generates an innovation insensible to unknown inputs
through a reduced output residual vector so that its jth

component is decoupled from all but the jth unknown
inputs.
Therefore, the proposed bank of filters provides state
estimation and unknown inputs estimation. Based on
the linear model, defined in (2), and under the
assumption that [ ] ( ) mqFCrank,z1i ii ≤=∈∀ � ,

(that is to say that the unknown inputs are
independent and the number of unknown inputs are
less than the number of measured outputs), each
filter is defined by the following relations:
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with ( )iiiii CAA Πω−= , iii CC Σ= , T
iiii RV ΣΣ= ,

and T
i

T
iiiiii RQQ ωΠΠω+= .

where ( )+= iii HCΠ , iii HA=ω  and

( )iiimii HCI ΠαΣ −= . mqm
i

×−ℜ∈α  is an arbitrary

matrix determined so that matrix iΣ  is of full rows

rank.
Following those assumptions, i

kγ  and i
kβ  are given

by ( )i
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kγ

and i
kβ  have the following properties:

qmi
k

−ℜ∈γ  is decoupled from the unknown inputs.
qi

k ℜ∈β  represents an estimation of the magnitudes

of the unknown inputs i
kd .

Therefore the new residuals vector i
kγ , insensitive to

unknown inputs and followed a Gaussian
distribution, can be substituted into equation (3) to
obtain an ith mode probability close to one when the
ith model describes the behaviour of the non linear
system in spite of the unknown inputs effects.

Moreover, an accurate state and unknown inputs
accurate estimation are generated according to
probabilistically weighted principle given as:
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Under the assumption that the actual non linear
system does not switch to one linear model to
another at every sampling periods, the stability and
the convergence of the unknown input Kalman filter
depend on the properties of each decoupling filter.
Necessary and sufficient conditions for stability and
convergence of each filter are established in (Keller,
1999).

4. APPLICATION RESULTS

4.1 Process description.

The process under interest in this study is a 948 litter
fixed bed anaerobic pilot plant used for the treatment
of wine vinasses. The reactor is a circular column of
3.5 m in height, 0.6 m in diameter. A recirculation
loop ensures the homogeneity of the liquid phase in
the tank. The synoptic of the plant is represented in
Fig. 1.
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Fig. 1. Schematic representation of the plant

This process is located at the "Laboratoire de
Biotechnologie de l’Environnement" (LBE), a lab
from the french national institute for agronomic
research (INRA) in Narbonne, France. It is
automatically operated to validate new control or
supervision algorithms. This highly instrumented
process is equipped with a dilution system that
allows the user to simulate input disturbances while
the control action is the input flow rate. A constant
35°C temperature is maintained using a heat
exchanger located in the recirculation loop.

The available instrumentation includes the
measurement of gas flow rate and composition,
partial CO2 pressure. In addition, an on-line
automatic titration sensor, called ATP_O and
developed by LBE INRA in Narbonne is also
connected to the ultra-filtration loop. It permits the
acquisition of on-line partial and total alkalinity
measurements every 3 minutes if required. It also
gives on-line estimates of the bicarbonate and VFAs
concentrations in the output of the reactor with a high



accuracy. An additional characteristic is that the
maintenance requirements are totally compatible
with industrial needs (only one manual operation per
week). Last but not least, this sensor was proven to
be very useful to achieve very good monitoring and
control of the anaerobic digestion process (Bernard
et al., 2000). Finally the output COD (Chemical
Organic Demand) is estimated from the measurement
delivered by an industrial TOC (Total Organic
Carbon) sensor. The input pH and the recirculation
flow rate are locally controlled.

All these sensors are connected to an input/output
device that allows the acquisition, treatment and
storage of data on a PC using the Modular SPC®

software. This software, also developed by LBE-
INRA in Narbonne, performs advanced control law
calculations as well as process supervision (Steyer et
al., 1997). In the following, a model of the
considered anaerobic digestion process is given.

4.2 Nonlinear Model

The nonlinear mass balance model of the anaerobic
digestion process is given by the following Ordinary
Differential Equation system (Bernard et al., 1998):
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where 1X , 2X , 1S , 2S  and CTI  are respectively

the concentrations of acidogenic bacteria,
methanogenic bacteria, COD, Volatile Fatty Acids
(VFA) and total inorganic carbon. The variable Z is a
measure of the alkalinity (i.e., the chemical buffer
capacity). The parameter α represents a
proportionality parameter of experimental
determination. The variable rD  is the dilution rate

and is supposed to be a persisting input, i.e.

( ) 0dD0 r >∫ ∞ ττ . In all cases, the upper index i

indicates “influent concentration”. In the following,
the total inorganic carbon influent concentration

i
TIC  is omitted due to its weak influence on the

anaerobic system.

Like in any other mass balance model of biological
processes, a strongly nonlinear kinetic behaviour is
present due to the reaction rates. These rates are

given by 
11S
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= µµ  where max1µ  is the

maximum bacterial growth rate and 1SK  the half

saturation constant associated with the substrate 1S
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= µµ  where max2µ

is the maximum bacterial growth rate without
inhibition, 2SK  and 2IK  are the saturation and

inhibition constants associated with the substrate 2S ,

respectively. The CO2 partial pressure 
2COP  is

expressed as a function of the states as
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The model takes the following classical state space
representation as :
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In this study, it can be noticed that many process
variables are measured on the process. 1S , 2S , Z ,

2COQ  and 
4CHQ  represent the available

measurements on the process. The output vector is
denoted Y  and is related to the state of the system by
a nonlinear equation.
Thus, the mathematical model of the reactor for the
treatment of industrial wine distillery vinasses takes
the following discrete non linear state space
representation:
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where 6ℜ∈ξ ( [ ] T
TI2121 CSSZXX=ξ ) is the state

vector, 1u ℜ∈  ( rDu= ) is the control input vector,

3
in ℜ∈ξ  ( [ ]Ti

r
i
2r

i
1rin ZDSDSD=ξ ) is the unknown

input vector and 5Y ℜ∈

[ ] T
2CO4CH21 QQZSSY =  is the output vector.

(.)F  represents the nonlinear state function

described by equation (13) and (.)H  represents the

nonlinear measurement function.

4.3 Results and comments

It is worth noting that the real pilot plant in extreme
cases can be destabilised. An overloading of influent
concentration can lead to catastrophic consequences
in downstream biological process: the system
becomes "unstable". Consequently, the simulation,
based on the dynamic model of the pilot plant, is
used within the framework of the above developed



full-order Kalman filter based on multiple model
representation. Note that some previous studies
(Bernard et al., 1998) have established that the model
reproduces precisely the behaviour of the system and
the simulation also correctly reproduces the effect of
the perturbation. For illustration purposes, three
linear models, established around each operating
point, are considered in the following study. Three
discrete linear stochastic models, according to (2)
obtained for a sampling period of five minutes, are
directly defined according to the dilution rate rD

from the nonlinear system representation (15). In
order to investigate the performances of the proposed
multiple model scheme, the estimation results (both
concerning the unmeasured states and inputs) are
shown using two different sets of initial conditions
summarised in Table 2.

Table 2. Initial conditions

( )0X1 ( )0X 2 ( )0CTI

Real system 1.4 0.22 52

( )0X̂ 1 ( )0X̂ 2 ( )0ĈTI

Set 1 1.25 0.19 46
Set 2 1.54 0.24 57

The results shown in the figures in the last page are
responses with respect to set-point changes. In the
simulation, a gaussian noise (N(0,1e-42)) is added to
each output signal. Firstly, the validation of the
isolation procedure is shown in figure 2 where step
variation rD  is considered for a range of 8000

samplings with a sampling period equal to five
minutes.
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Fig. 2. Time evolution of Mode probabilities and
Dilution rate

Based on a bank of 3 unknown inputs Kalman filters,
the mode probabilities of each model exactly
correspond to the operating values. The selected
model is always close to the dynamic behaviour of
the non linear system according to the considered
operating regimes. Therefore, the following Fig. 3, 4,
5, 6, 7 and 8  show the good convergence properties
of the estimator for the different initial values.
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Fig. 3. The unmeasured state X1 and 1X̂  (g/l)
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Fig. 4. The unmeasured state X2 and 2X̂  (g/l)
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Fig. 8. The unmeasured inputs iZ and iẐ

These different time evolution illustrate the potential
of the proposed approach to estimate unmeasured
states and inputs. For each operating point, the bank
of full-order Kalman filters provides unknown inputs
estimation. Those estimations are optimally
decoupled from the state. Nevertheless, the proposed
method requires an exact knowledge of the number
of linear models describing the complete dynamic
behaviour of the non linear system.

Finally, notice that the performances of the multiple
model scheme are comparable whatever are the
uncertainty considered on the initial conditions as
presented in the different figures. It is worth noting
that the sensitivity of the unknown inputs estimation
to the noise measurements was not evaluated in this
simulation but it is possible to see the influence of
noise measurements on the unknown inputs.

5. CONCLUSION

In this paper an estimation filter has been designed
for the monitoring of an anaerobic digestion pilot
plant. The estimation of the input concentrations of
Wastewater Treatment Plants is a very challenging
problem. Recall that these systems suffer of a quasi
systematic lack of sensors and that their investment
(and operating) costs and the presence of suspended
solids in the influent usually limit their practical
implementation. The approach uses the concept of a
bank of unknown input Kalman filtering according to
the assumption that the dynamic of the discrete non
linear system could be defined as a combination of
discrete linear invariant model. It was shown that

satisfying results were obtained under the
assumptions that the system is operating around
nominal conditions. The procedure is quite simple to
implement nevertheless it requires a dynamical
model of the process.
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