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Abstract: In this paper we propose a new method of parameter space design for
robust control synthesis, in particular in terms of real stability radius, using quantifier
elimination (QE). We also aim at practicality by employing the scheme to combine
the sign definition condition (SDC) and a special QE algorithm using Sturm-Habicht
sequence. The validity of our approach is confirmed by some concrete examples.
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1. INTRODUCTION

The parameter space approach is known to be one
of the effective methods for robust control syn-
thesis and multi-objective design, The approach
can be utilized to determine the set of certain
parameters which satisfies the given specifications
in a parameter space. For robust control synthesis
and multi-objective design, recently, the parame-
ter space design accomplished by using quantifier
elimination (QE) has been proposed (Dorato et
al., 1997; Jirstrand, 1998): The robust control
problems are reduced to first-order formula de-
scriptions, then it can be solved by applying gen-
eral QE. However, naive reduction of the control
problems to the QE problems, in general, com-
plicated to achieve QE computation efficiently.
This is a serious issue in view of efficiency be-
cause the worst-case complexity of general QE
algorithm based on cylindrical algebraic decom-
position (CAD) algorithm has doubly exponential
behavior.

While, fortunately, many important design speci-
fications for robustness can be reduced to so called

sign definite conditions (SDC):

∀x > 0 (f(x) > 0)

Moreover, we can use a special QE algorithm us-
ing Sturm-Habicht sequence which is much more
efficient than the general one for the SDC. This
scheme of combining reduction of the specifica-
tions to the SDC and usage of a special QE was
first successfully introduced to solve robust con-
trol design problems in (Anai and Hara, 2000).

The robust controller synthesis problems, which
are the problems of finding an appropriate fixed-
order controller to achieve stability and a pre-
scribed level of parameter stability margin (sta-
bility radius) for a plant, is as yet unsolved.
Currently, in an engineering sense, mainly, the
techniques for exact computation of stability ra-
dius can itself be used in an interactive loop to
adjust target parameters to robustify the system.
In this paper we propose a systematic approach
to such robust controller synthesis problem using
quantifier elimination and also aim at practicality.
This is realized by utilizing the scheme for robust
control design shown in (Anai and Hara, 2000).
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The organization of the rest of the paper is as
follows: The idea of robust control synthesis based
on SDC and special QE algorithm is explained in
§2. §3 is devoted to our QE approach to robust
control analysis. §4 provides our QE approach
to various synthesis problems. Several concrete
analysis and synthesis examples are presented for
demonstrating the validity of our approach in §5.
§6 addresses the concluding remarks.

2. PARAMETRIC APPROACH TO ROBUST
CONTROL DESIGN VIA QE

Consider a feedback control system shown in Fig
1, where p = [p1, p2, · · · , ps] is the vector of
uncertain real parameters in the plant G and x =
[x1, x2, · · · , xt] is the vector of real parameters
of the controller C. Assume that the controller
considered here is of fixed order.

Fig. 1. A standard feedback system

The performance of the control system can often
be characterized by a vector a = [a1, · · · , al]
which are functions of the plant and controller
parameters p and x:

ai = ai(x,p), i = 1, · · · , l, (1)

and the target specifications are usually given as
follows:

ai(x,p) < τi, i = 1, · · · , l. (2)

The goal is to find the region in the parameter
space which satisfies the design specifications.
Several concrete robust synthesis problems will be
provided in §4.

The QE based approach is one of the effective
tools if the specifications (2) are reduced to first-
order formula descriptions. However, the general
QE algorithm has its inherent undesired compu-
tational complexity of doubly exponential. It is
therefore important to employ the strategy com-
bining the reduction of (2) to a “simple” QE
problem and an efficient specialized algorithm for
a particular type of inputs aiming at practical ap-
plicability. A successful example of such attempts
is the scheme of combining the SDC and a special
QE algorithm using Sturm-Habicht sequence pre-
sented in (Anai and Hara, 2000). Many control de-
sign specifications such as H∞-norm constraints,
frequency restricted norms, phase/gain margins,
and D-stability constraint for robustness can be
recast as SDC

∀x > 0 (f(x,x,p) > 0). (3)

See (Anai and Hara, 2000) for a concrete com-
parison on the efficiency to solve the SDC by the
general QE algorithm based on CAD algorithm
and a special one using Sturm-Habicht sequence.
The computational complexity of Sturm-Habicht
sequence that is the dominant part of the algo-
rithm for low order cases is still bounded by sin-
gle exponential. The computational experiments,
however, show in the case of the moderate num-
ber of parameters (2 or 3 parameters) that the
algorithm works in an efficient way for the rather
high order system (more than ten-th order) that is
considered to be practical in an engineering sense.

In this paper we focus on the real stability radius.
Though there are many results about the explicit
formula to compute the stability radius so far
(e.g. (Kokame and Mori, 1993; Hitz and Kaltofen,
1998)), the problem of determining the fixed-order
controller to achieve stability and a desired level
of parameter stability margin has not been solved
yet. Therefore, here we propose a new synthesis
method of fixed-order robust controllers by using
the above scheme. This work also extends the
applicability of the scheme.

3. REAL STABILITY RADIUS

In many control systems plant parameters may
vary over a wide range from the nominal value
p0 = [p0

1, · · · , p0
� ]. If the controller x is given,

the maximal range of variation of the parameter
p = [p1, · · · , p�], measured in a suitable norm
for which the stability is preserved is called the
parametric stability margin (radius of stability)
with the controller x. It is defined by

ρm = sup{ r | g(s,x,p) stable, ||p − p0|| < r},
where g(s,x,p) is the characteristic polynomial of
the closed-loop system shown in Fig 1.

We consider the following type of characteristic
polynomial, i.e. its coefficients are linear function
of the plant parameter p :

g(s,x,p) = a1(s,x)p1 + · · · + a�(s,x)p� + b(s,x),

where ai(s) and b(s) are polynomials over the reals
R and pi ∈ R. We refer to this as the linear case.
We assume that the degree of g(s,x,p) is fixed.

3.1 An explicit formula

Here we employ the results from (Bhattacharyya
et al., 1995) and show their results briefly: Since
we consider the linear case, the characteristic
polynomial of the system of Fig.1 can be written
as follows:

g(s,p0 + ∆p) = g(s,p0) +
�∑

i=0

ai(s)∆pi, (4)



where

∆p = p − p0 = [∆p1, · · · ,∆p�].

Let s∗ be a point on the stability boundary ∂D.
Suppose s∗ is a root of g(s,p0 + ∆p). Then we
have

g(s∗,p0) +
�∑

i=0

ai(s∗)∆pi = 0. (5)

Taking account of weighted perturbations, we can
rewrite above equation as follows:

g(s∗,p0) +
�∑

i=0

ai(s∗)
wi

wi∆pi = 0, (6)

where wi > 0. If s∗ is real, (6) can be expressed
as

A(s∗)u(s∗) = b(s∗), (7)

where

A(s∗) =
[
a1(s∗)
w1

· · · a�(s∗)
w�

]
,

u(s∗) = [w1∆p1, · · · , w�∆p�]T ,
b(s∗) = −g(s∗,p0).

If s∗ is complex, (6) can be written as the same
equation (7) with

A(s∗) =



aR,1(s∗)
w1

· · · aR,�(s∗)
w�

aI,1(s∗)
w1

· · · aI,�(s∗)
w�


 ,

u(s∗) = [w1∆p1, · · · , w�∆p�]T ,

b(s∗) = [−g0
R,−g0

I ]
T ,

aR,k = Re(ak(s∗)), aI,k = Im(ak(s∗)),

g0
R = Re(g(s∗,p0)), g0

I = Im(g(s∗,p0)).

Since the minimum norm solution of (6) given by

ρ(s∗) = inf{||∆p|| | ∆p satisf ies (6)} (8)

is a candidate of the stability radius, the equation
(7) determines the parametric stability margin
in any norm: Let u∗(s∗) be the minimum norm
solution of (7) for s∗. Then

ρ = inf
s∗∈∂D

||u∗(s∗)||.

If (7) has no solution, then ρ is set equal to ∞.

3.2 QE approach to robust control analysis

We now consider the �2-norm case. Assume that
A has full rank = 2 for simplicity, Then the
minimum norm solution u∗(s∗) is given by

u∗(s) = AT (s)[A(s)AT (s)]−1b(s). (9)

First we consider the case where s∗ is real. Let
a finite set of intersection points between ∂D
and real axis be {r1, · · · , rk}. For each ri we

can compute the ρ(ri) ≡ ||u∗(ri)||2 from (9)
immediately.

For the complex s∗, we use an appropriate param-
eterization α(t) of the stability domain boundary
∂D, where t ∈ I = [ts, te] ⊂ R ∪ {±∞}. We allow
only polynomial descriptions for the parameteri-
zation , e.g. Hurwitz case α(t) = it where i is an
imaginary unit. Substituting the parameterization
α(t) for the indeterminate s∗ in the formula (9)
leads to an expression u∗(α(t)). We simply denote
u∗(α(t)) by u∗(t).

Having an explicit formula u∗(t) enables us to
compute the exact minimum of ||u∗(t)||2 with
respect to t ∈ I symbolically. Actually we can
compute the minimum

Fm := inf
t∈I

||u∗(t)||22 (10)

by a quantifier elimination as will be shown later.

Note that we must deal with the case A is not
full rank. If rank(A) = 0, (7) has no solution,
so ρ = ∞. If rank(A) = 1, (7) is consistent
iff rank[A,b] = 1, otherwise (7) has no solu-
tion, hence ρ = ∞. Therefore, for the case of
rank[A,b] = 1, we simply replace two equations
with a single equation and can proceed as before.
Let {d1, · · · , dm} be the values of t for which the
rank drops and rank[A,b] = 1. Consequently, the
stability radius is given by

ρm = min{
√
Fm, ρ(ri), ρ(idj)}. (11)

Now consider to compute the minimum Fm of
F(t). In general, F(t) is a rational polynomial,
say F(t) = N(t)/D(t) for polynomials N and D.
Finding the minimum of F(t), which is a type
of optimization called hyperbolic optimization, can
be solved as the following QE problem:

∃t ∈ I ((D > 0 ∧N ≤ zD) ∨ (D < 0 ∧N ≥ zD))

where z is newly introduced variable correspond-
ing to F(t). Since the denominator of F(t) is
strictly positive, i.e., D > 0 is true, the above
formula can be reduced further to

∃t ∈ I (N ≤ zD). (12)

By performing QE for (12) we have an equivalent
quantifier-free formula Ψ(z) which presents the
possible range of z, in particular, stating the
minimal value of F(t). Equivalently, we can solve
(12) by solving the following QE problem

∀t ∈ I (N − zD > 0). (13)

Performing QE for (13) gives a quantifier-free
formula Φ(z) equivalent to (13). Φ(z) presents
the possible range of z, in particular, stating the
maximum value of z which corresponds to the
minimum of F(t). In other words, Φ(z) = ¬Ψ(z).

The first-order formula of the type (13) can be
reduced to the following SDC:

∀y > 0 (h(y) > 0) (14)



by a bilinear transformation y = − (t−ts)
(t−te) , where

h(y) is a polynomial. A special QE algorithm us-
ing Sturm-Habicht sequence introduced in (Anai
and Hara, 2000) can be utilized for the SDC. This
is why we employ the reduction (13) instead of
(12). Let the resulting formula after applying QE
to (14) be Π(z). Then ¬Π(z) shows the possible
range of z stating the minimum of F(t).

4. SYNTHESIS PROBLEMS

For the synthesis problems, the control parame-
ters x remains as free parameters during the pro-
cedures in the previous section. Here we illustrate
how we solve several concrete synthesis problems.
First we consider the following basic problem:

Problem 1. Consider the control system de-
picted in Fig.1. Given a specific value of stability
radius ρ. Let g(s,x,p) be a characteristic polyno-
mial of the closed-loop system with fixed degree
and p0 be a vector of nominal values of plant
parameters such that g(s,x,p0) is D-stable. Then
the problem is to find the feasible region of control
parameters x to achieve the desired level ρ of
stability radius.

D-stability condition: First, we should mention
the condition of parameters x so that g(s,x,p0)
is D-stable. The condition would be given as
a semialgebraic set. For Hurwitz stability, such
condition of x is given by the well-known Liénard-
Chipart criterion immediately. For Schur stability
and wedge shape regions, i.e. the domain D of
which the complementary set D = C − D is of
the form D = {x(ω, t) + iy(ω, t) ∈ C|ω ∈ R, t ∈
[ts, te]}, the pole location problem can also be
reduced to check a sign definite condition, see
(Kimura and Hara, 1993). Therefore, D-stability
condition is also solved efficiently by a special QE
using Sturm-Habicht sequence.

Algorithm: Problem 1 is solved by the same
procedure shown in §3.2: For the real case s∗ = ri
(i = 1, · · · , k) is real, immediately from (9), we
have ρ(ri) = ||u∗(ri)||2 as formulas in x. Let
δ = ρ2, then we have

ψi(x) ≡ (||u∗(ri)||22 ≥ δ), for i = 1, · · · , k
In the case where s∗ is complex, the formula (13)
is of the same form containing the parameters x:

∀t ∈ I (N(x, t) − δ ·D(x, t) > 0). (15)

Consequently, we lead to the following SDC;

∀y > 0 (hp(x, y) > 0), (16)

where hp is a polynomial. After performing QE
for (16) we have an equivalent quantifier-free
formula φ(x) showing the possible range of x

which satisfies the given stability radius condition.
φ(x) is also a semialgebraic set in x. Moreover, for
the non full rank case, from (9), we have

κ(x) ≡ (||u∗(idj)||22 ≥ δ) for j = 1, · · · ,m
Finally, the formula

Γ(x) ≡ φ(x) ∨ (
∨
i

ψi(x)) ∨ (
∨
j

κj(x))

gives the possible region of x which satisfies the
given stability radius specification.

Next we show some advanced synthesis problems
including multi-objective problems and optimiza-
tion which can be solved naturally by using our
parameter space approach based on QE presented
in this paper and (Anai and Hara, 2000).

Problem 2. Find the maximum attainable sta-
bility radius ρ by a fixed-order D-stable controller
C(s,x).

Problem 3. Find the best achievable nominal
performance by a fixed-order D-stable controller
under a stability radius constraint.

Problem 2: The attainable stability radius can
be obtained by the same procedure as before if
we leave ρ as a free parameter, resulting in the
semialgebraic expression Γ′(ρ,x). Moreover, the
stability condition, say S(x), of the controller
C(s,x) is obtained by the same way shown above.
Then the attainable stability radius condition is
given by

ϕ2(ρ,x) ≡ Γ′(ρ,x) ∧ S(x).

The maximum attainable stability radius can be
obtained by solving the optimization problem:

Maximize ρ subject to ϕ2(ρ,x). (17)

Problem 3: Consider the system with a given
stability radius ρ0. Let Ti(s,x,p0) be the transfer
functions and

||Ti(s,x,p0)||[ωi,ωi] < γi (18)

be the nominal performance specifications with
frequency restrictions. Here γi > 0 are free param-
eters. The frequency restricted norm constraints
(18) can be reduced to SDCs and solved by our
approach, resulting in the formulas Ni(γi,x), re-
spectively. Therefore, the achievable nominal per-
formances condition are given as

ϕ3(γi,x) ≡ Γ′(ρ0,x) ∧ S(x) ∧ ∧
i Ni(γi,x).

The maximum achievable nominal performance
obtained by solving the following optimization
problem:

Maximize γi subject to ϕ3(γi,x). (19)

Optimization (17)(19): In general, both the
optimization problems are nonlinear and non-
convex. Since ϕ2, ϕ3 are polynomial constraints,



they can be solved by using QE exactly. However,
we have to use general QE algorithm because gen-
erally the reduced QE problems are considered not
to have a specific structure desirable in the compu-
tation. Hence, this is practical only for modest size
of problems. Methods of numerical optimizations
could be utilized for large size problems.

5. ANALYSIS AND SYNTHESIS EXAMPLES

This section provides analysis and synthesis prob-
lems to confirm the validity of our approach ∗ .

5.1 Stability radius computation

Consider the continuous time control system with
the plant

G(s,p) = 2s+3− 1
3p1− 5

3p2

s3+(4−p2)s2+(−2−2p1)s+(−9+ 5
3p1+ 16

3 p2))

controlled by a PI controller

C(s) = 5 + 3
s .

See (Bhattacharyya et al., 1995). The character-
istic polynomial g(s,p) of the closed-loop system
is given by

s4 + (4− p2)s3 + (8− 2p1)s2 + (12− 3p2) + (9− p1 − 5p2)

Let suppose p0 =[p0
1, p

0
2] = [0, 0], which guarantees

the nominal stability. We now compute the �2-
stability margin with weights w1 = w2 = 1
in terms of Hurwitz sense, i.e., α(t) = it and
{r1 = 0}. For r1 = 0, from (9), we have ρ(0) =
||u∗(0)||2 = 9

√
26

26 . For d1 =
√

3, (7) is consistent,
and we have ρ(i

√
3) = 3

√
2

5 . Then

F(t) = ||u∗(t)||22 = t8−16t6−22t4+240t2+105
(2t2−1)2 .

The QE problem corresponding to (13) is

∀t > 0 (t8−16t6+106t4+112t2+137−z(4t4−4t2+1) > 0).

By applying QE, we have z − 16 < 0, which leads
to

√Fm = 4. Consequently, ρm = min(4, 9
√

26
26 ,

3
√

2
5 ) = 3

√
2

5 . This result coincides with that in
(Bhattacharyya et al., 1995).

5.2 Robust stability synthesis

Consider the feedback system shown in Fig.1 with
G(s,p) = 1

s2+p1s+p2
, C(s,x) = x1 + x2

s ,

where the characteristic polynomial is given by

g(s,x,p) = s3 + p1s
2 + (x1 + p2)s+ x2. (20)

Suppose the nominal values of the plant parame-
ters are p0 = [p0

1, p
0
2] = [1, 1] and the weights are

∗ All the symbolic computation and feasible region plots
were done by using a computer algebra system Risa/Asir
(cf. http://www.math.kobe-u.ac.jp/Asir/asir.html).

w1 = w2 = 1. The synthesis problem is to find
the feasible set of parameter values of x in the
PI controller C(s,x) for the system to achieve a
given level of stability margin δ(= ρ2) in Hurwitz
sense. Let δ = 0.5. By Liénard-Chipart criterion,
g(s,x,p0) is Hurwitz iff

θ(x) = (x2 > 0 ∧ x1 − x2 + 1 > 0)

holds. The QE problem corresponding to (15) is

∀t > 0

t8 + (−2x1 − 2)t6 + (x2
1 + 2x1 + 3

2
)t4 − 2x2t2 + x2

2 > 0.

By applying QE, we have

φ(x) = (x2 < 0 ∨ (P1 > 0 ∧ x2 
= 0)),

where
P1(x) = 256x4

2−768x1x3
2−768x3

2+16x4
1x2

2+64x3
1x2

2+

736x2
1x2

2 + 1344x1x2
2 + 480x2

2 − 32x5
1x2 − 160x4

1x2 −
464x3

1x2 − 752x2
1x2 − 528x1x2 − 112x2 +8x6

1 +48x5
1 +

124x4
1 + 176x3

1 + 142x2
1 + 60x1 + 9.

For r1 = 0, (7) is inconsistent, hence we have
ρ(0) = ∞. For non full rank case, (7) is incon-
sistent. Consequently, the formula

θ(x) ∧ φ(x) (21)

provides the feasible set of parameters x for the
system to achieve the desired level of stability
radius. The shaded region in Fig.2 corresponds to
(21).

Fig. 2. The possible region of x described by (21)

5.3 Robust stability with sensitivity

We can add any design constraint, which can be
reduced to a SDC, in the robust stabilization in
§5.2. A typical example is to add finite frequency
H∞ norms of interested closed-loop transfer func-
tions such as sensitivity function S(s). Let us con-
sider the robust stabilization for the same system
in §5.2 under a sensitivity constraint

||S(s)||[0,1] ≡ max
0≤ω≤1

||S(iω)|| < 0.1 (22)

where
S(s) = s3+s2+s

s3+s2+(x1+1)s+x2
.



We can see from a simple symbolic computation
that the frequency restricted H∞-norm constraint
(22) is reduced to the following SDC:

∀z > 0

(x2
2z3 +(x2

1 +2x1 +3x2
2 −2x2 −99)z2 +(2x2

1 +2x1 +3x2
2 −

4x2 − 99)z + x2
1 + x2

2 − 2x2 − 99) > 0.

Performing QE to this gives the following condi-
tion in x:

(P3 > 0 ∧ P4 ≥ 0) ∨ (P2 ≥ 0 ∧ P4 ≥ 0), (23)

where

P2(x) = 3x2
2 − 2x2 + x2

1 + 2x1 − 99,

P3(x) = 264627x4
2 +7128x1x3

2−349668x3
2−3596x3

1x2
2+

169274x2
1x2

2 + 462528x1x2
2 − 13152942x2

2 + 2392x4
1x2 +

7952x3
1x2 − 426492x2

1x2 − 705672x1x2 + 19405980x2 −
400x6

1 − 1996x5
1 + 105419x4

1 + 352836x3
1 − 9467766x2

1 −
15524784x1 + 288178803,

P4(x) = x2
2 − 2x2 + x2

1 − 99.

The shaded region in Fig.3 corresponds to (23).

Fig. 3. The possible region of x described by (23)

Finally, we can obtain the admissible region of x
which meets the all requirements given in §5.2 and
5.3 as illustrated in Fig.4 by superposing (21) and
(23) in the parameter space.

Fig. 4. The possible region of x by (21) ∧ (23)

6. CONCLUSION

In this paper we proposed a new method of pa-
rameter space design for robust control synthesis,
particularly in terms of stability radius, based on
the scheme of combining of the SDC and a special
QE. The validity of our approach has been con-
firmed by several concrete examples. We can ac-
commodate our method naturally to independent
perturbation setting among the polynomial coeffi-
cients just by using an explicit formula for the case
(e.g. (Hitz and Kaltofen, 1998)). In this sense, the
framework presented in this paper would provide
a unifying platform for further research along this
direction.

The advantages of using QE is to be able to
resolve many control synthesis problems that are
difficult to solve in view of numerical methods.
Moreover, QE can be also useful for building up
the mathematical modeling (in particular for opti-
mization) of the problems that has no appropriate
formularization.
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