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Abstract: In this papera neav adapive fuzz contrdler with CMAC-basel adapive
scding factorsis poposed By using the piopos& method scaling factos can be uned
ortline, ard contrd performare can be improved.In addtion, CMAC is usel only for
tuning scaling factors 0 thd it is eay to implemen ard othe fuzzy parametes can be
designé by conventiond method. Furthermore, abustnes for modeling eror can be
improved as compard to convetiond method. Finally, simuldion resuls ae show to
demonstra thda the poopose mettod ha bedter dynamic ard stdic propery ard has
better robustnes tha conventionhmethod. Copyright © 2002 IFAC
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1. INTRODUCTION

Since the fuzy contrd techniqe was firs
introdwced in the eary 1970’s it has been pad more
and more dtention ard has been usel to contrd a
wide range © poorly undersbod plants Ther
swccess wa dtributed to tke fad that inhereng
nonlinea contrd strategiesexpresseal in a (restricted
naturd langua@ framework could be obtainel from
human operato ard then implementd as a fuzz
contrdler. Ore d its main meiits is thd it is vey
usefu when the proces moded ae nonlinea or too
compl for analyss ard synthess by convertiond
contrd techniques(Knadeb ard Langholz 1994)
However it is al® worth naing problem thd it is
impossibke © desig a fuzz/ contrdler tha neednat
assune anythng éou its eavironment Ore can only
strive 0 lessen its dependerec ard sengivity to the
parametes o its environment The man weaknes d
convertiond fuzzy systens is tha the fuzzy
algoithms am parameter are provided by expets,
and they canna be tunel in the procss Thus mary
new types of fuzzy contrdlers hawe be@ devebpa
by reearchersAdagive fuzz/ contrdler isa type
the nav fuzzy contrdlers.

The first adaptie fuzz contrdler was devebped by
Prock ard Mamdam at Queen Mary Cdlege
(Prock ard Mamdanj 1979. Now, mary types o
adapive fuzz/ contrdlers hawe beendevebpeal to

sdisfy the difference proces requirementsAdagive
fuzzy contrdler can be catgorized into two kinds
the ore heas adapive fuzzy rules the othe hes
adapive fuzzy parametersin the fuzz rule adagive
contrdlers, the nhumbe of contrd rules is increased
decreasé o their shape ae nodified according to
chang d plant parametersin the fuzz paramete
adagive contrdler, fuzzy parameter for exampé
scding factor are nodified accordng © chang o
plart parametersin genergl the fuzz/ parametes
adapive contrdlers ae simple than the fuzz rule
adapive contrdlers are both in the gplicaion ard
the desgn Brown ard Harris 1994)

In this paper a nev fuzzy contrdler with
adapive-scaling factos is proposed This fuzz
contrdler can ture scding factos online by
Cereb#lar Modd Articulation Contrdler (CMAC).
Althoughtuning scaling facta is simplestin all fuzzy
parametersit has simila effecs @ the chang o
mapping reldionshp to tke contrd input ard outpu
variables ard the chaage o shag am siz for
memberstp fundion (Brown ard Harris 1994)
Furthermore, CMAC can ture scéing parametey
quickly ard contrd performarme ca be improved
becaus o its learnirg capalility of nonlinea
functions smal computatond complexities o the
learnirg algorittm and generézaion capaliity.
Therefore the proposel method $ al® effective for
plant existirg modeling erors.



This paper is organized as follows. In section 2,
scaling factors in fuzzy controller that effect to
system performance are introduced briefly. In section
3, a new scheme of adaptive fuzzy controller is
proposed. CMAC network, its learning algorithm and
the principle of adaptive fuzzy control with
CMAC-based scaling factor are given. In section 4,
two-order plant is considered as including varying
parameters, and computer simulations are conducted
to show effectiveness of the proposed method. In
section 5, properties of the proposed method are
summarized.

2. THE RELATION TO SCALING FACTORS AND
SYSTEM PERFORMANCE

The characteristics of fuzzy controller depend on
fuzzy rule base, membership function, scaling factors.
After rule base are determined by the experience of
experts or operators, in fuzzy controller, parameters
that can be tuned mainly are membership functions,
scaling factors and scaling gains.

Scaling factors are used to map the real input to the
normalized input space. In general, scaling factor is
defined as (Brown and Harris 1994)

Ke=Ne/€rax » @)
Kec™ Neo/ €Crme %)

where K, is the scaling factor of the error, K is the
scaling factor of the error change rate, ne Ny are the
numbers of scaling grades of error and error change
rate respectively, €, €Crax are the maximum range
of the real error and error change rate respectively.

Ke , Kee are multiplied by the corresponding input
variable, thus altering the domain of interest for the
respective variable. After fuzzy rule base is fixed, we
can alter the scaling factors to modify effectively the
distribution (the shape and size) of all of the
membership functions defined on the appropriate
domain, that is, changing the performance of the
overall system.

Many researchers have performed an extensive series
of the experiments that show how the process
dynamic and static characteristics change when
scaling factors of fuzzy controller are altered (Procyk
and Mamdani, 1979; Brown and Harris, 1994; Albus
1975). These experiences are summarized in Table 1.

Besides, many results show that the type, shape and
size of fuzzy membership function determine
mapping relation between input and output
parameters, and system characters (Brown and Harris,
1994). The shape of error membership function
affects sensibility of system directly. When the curve
shape of the system error membership function is
flatter, system sensibility becomes inferior, and when
the shape of the membership function for the rate of
system error change is the flatter, system has better
stability. Hence, in order to improve system
performance, uneven distribution of membership
function can be effective, that is, when system error
is smaller, the sharper shape of error membership
function should be use and when system error is
larger, the flatter shape of the curve should be use. As
for the membership function of system error change
rate, when system error change rate is smaller, the
shape of membership function should be flatter and
when system error is larger, the curve shape should
be sharper. To realize similar effects, CMAC-based
adaptive scaling factor is proposed in the followings.

3. CONTROL SYSTEM STRUCTURE AND
LEARNING ALGORITHMS

The structure and learning algorithm for adaptive
fuzzy controller with CMAC-scaling factors are now
given.

3.1 Control system structure

The final form of the fuzzy controller to be defined is
shown in Fig.1. In the figure, the differences with
basic fuzzy controller are only scaling factors and
additional learning part, which are implemented by
CMAC network and corresponding update rule.

Table 1 Fuzzy controller parameter and system property change from small to big with constant scaling grade

Definition Relationship of mapping Static error Overshoot Transient time
Ke Ke=Nd/€max €max F€gion reduce Reduce Increase Reduce
Kee  Keae=Ne/€Cmax €Crnax F€gion reduce Increase Reduce Increase
Ky Ky= Umex Ny Umax €gioN increase Reduce Reduce Reduce
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Fig.1 Block diagram of the proposed CMAC-Fuzzy control



3.2 Fuzz controller

In Fig.1, the structure of fuzzy controller is a basic
fuzzy controller with two-term input and single
output. This fuzzy controller is constructed based on
the foll owing assumptions:

1) The fuzzy rule base is chosen as a linea one
and shown in Fig.5 (Li, et al., 1997);

2) The membership functions are dosen as the
triangular or Gauss shape with even distribution;

3) Mamdani’s max-min inference method is used
ininference part (Procyk and Mamdani, 1979;

4) Defuzzificaion chose a ceiter of gravity
method (Brown and Harris, 1994), that is,

U= T, U g, €)

where u, is membership function of U, and U is
linguistic value of u.

3.3 CMAC Neural network

CMAC neura network was proposed by Albus in
(Albus, 1975. The block diagram of CMAC is shown
in Fig.2. From Fig.2, we can see that CMAC
algorithm can be decomposed into three separate
mapping, that is,

S—M—~A—u,
where

S={input vedors};

M = {intermediate variables},

A = {asciation variables},

u = {output of CMAC},

f1 (S--M mappng) isan input coding,

f, (M---Smapping) an addresscomputing,

f3 (A---u mapping) an output computing.

In this system, since CMACs are only used in tuning
scding fadors, the number of memory locaionsin A
is not so large in pradice Therefore, in this paper,
the basic CMACs are used, which does not use aty
randomly mapping.

f1 f, f3
( A N A \f_H
S M A u
.| Logic | | Physic _ | outout
Input—> Addresd | Address up
N\ J J
Adaptive mapping Linea mapping

Fig. 2. The block diagram of CMAC

Fig.3 shows the CMAC without random mapping for
the two-dimensional input and one-dimensional
output consisting of 3 overlays and 12 Ilasis
functions.

The lattice cdls are numbered from 1 to 16 Asaume
the input to the CMAC as s = (s, ) and the input
space &

S={(s1, %) | X1 < $< Xp, Y1 < $< Yo}

Then s, and s, are quantized with quantization
intervals L; and L,, respedively. In the first overlay,
s, is quantized into A or B, and s, is quantized into a
or b, respedively. The pairs of aA, aB, bA, bB
express basis functions, and aA(w;) implies that the
basis function aA has the weight w;. When the input s
is given to the 11th lattice cdl, it spedfiesaA, dA and
fF, and the CMAC output Wi+ Wg+ Ws».

Suppose that the desired signal for the input sis d
and leaning rate is g, the CMAC is then learned by
the following corredion factor o to al weights
correspondingto s
e=d-u
0 = gelk
Defining the threshold as g, the learning is continued
until the followinginequality is stisfied:
lef < e,
Using such leaning scheme, the CMAC can
approximate awide variety of nonlinea functions.
S
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Fig.3 Structure of CMAC
3.4 Learning processin the propcsed method

In Fig.1 the input of CMAC is system error or error
change rate signal, that is, 1-input 1-output CMACs
are used as the scding fadors. Here CMACs are
trained by initiali zation processand ontline learning
process The initialization leaning process is



completed by off-line learning. The initialization and
on-line learning processes are explained in the
followings.

3.4.1 Initialization process

It is difficult to employ the controller constructed by
an adaptive law or a learning law to the real plant
without a suitable preparation. Therefore, the
initialization learning process is very important for
making controller work properly. The block diagram
of the initialization learning process of the specified
CMAC isshownin Fig4.

In Fig 4, e(t), ec(t) are system error and error change
rate signal separately, that is, the input signal of the
CMAC, defined as:

e(t)=r()-y(, (4)
ec(t) =e(t) - e(t-1), 5)

where r(t) is system input signal, y(t) is system
output signal, and Ke(€), Keo(€C) are initialization
functions, that is, the training signals. In the proposed
method, two kinds of training signal are used:
(1) conventional constant scaling factor
Ko=[Keo Keco] = [Ne/€rax  Nec/€Crmand , (6)
(1) scaling factor function
Ko(eec) = [ Keo(€) Keo(€)]
=[aexp (-bdel) axexp (belecl)], (7)

where
3= Ne€XP(L)/erax ,
be: 1/emax ’ (8)
Ae= VKoo,
Pec= 1/€Cmny,

Keor Koo » Keo(€), Keo(eCc) are used in order to
determine the initial weights in the on-line learning
of the CMAC.

The weights W are updated so that Ky (t) approaches
to Ko, where the off-line learning is carried out based
on the following a gorithm:

W) = W) + 91(Ko- Ko(1))/ o, 9)

Where p denotes the total number of the selected
weightsin the CMAC and the g, isthe learning rate.

Keo O Keo
+
eor Ae Ke Or Kege
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¥
Fia.4 Block diagram of initiaization learnina

3.4.2 On-line learning process

After the initialization process is carried out enough,
the learning phase is changed from the off-line to the
on-line. The weights obtained in the initialization
process are used as initia weights in the on-line

learning. Fig.1 gives out the block diagram of the
on-line learning process of the CMAC.

In on-line learning, the desired signal for tuning
cannot be obtained. Therefore, the error e(t) and error
change rate ec(t) of desired output signal r(t) and real
output signal y(t) are introduced to on-line learning
process, and the on-line learning is performed so that
the system output y(t) approaches to r(t), thet is, the
following algorithm is employed:

(W) e(t) = 0,ec(t) =0,
W) + g2 sign(e(t)) / p
cec(t)=0.et) #0,
W)= { W) - 9. sign(ec(t)) / p (10)
;e(t)=0,ec(t) #0,
W) - g sign(e(t)*ec(t)) / p
L . otherwise,

where g, islearning rate of the on-line learning.

According to the above algorithm, the CMACs are
trained on-line.

4. SYSTEM PARAMETER DESIGN AND
COMPUTER SIMULATION

In this section, to show the applicability of the
proposed adaptive fuzzy controller, computer
simulations are carried out, the results are described
and compared with a conventional fuzzy controller.

4.1 Plant

The nominal plant to be controlled is a second-order
process described as

G(s) = k/ (Tis+1) (Tos+1) . (12)

where Ty, T,, and k are 8,2 and 5, respectively. By
selecting sample time as Tg=0.05 discrete
representation of plant is obtained:

y(K)= a; y(k-D+a, y(k-2)+b'uk-1), (12)

where a;, a,, b are nominal values of plant
parameters, and their values are 1.9691, -0.9693,
-0.0154, respectively.

Assuming there exists modeling error in plant
parameters, computer simulations are carried out for
following cases:

y(K)= ary(k-1)+ay(k-2)+bu(k-1),  (13)
a=a,;,a=a,,b=b,
a;= a; ,a,= a, +0.0386, b
a;= a; ,a,= a, +0.0615, b
case(d) a= a;,a= a,-0.1403,b=b,

case(€) a= a; ,a= @,-0.2807,b=1b,

case (f) a= a;+0.05901,a,= a,,b=b’,
case(g) a;= a; +0.0299, a,= a, +0.0386, b= b,
case (h) a,;= a, +0.0691, a,= a, +0.0386, b=b'.

case (a)
case (b)
case (C)

b
b

Also assuming the system input signa r(t) is step



signal that has magnitude of 10.
4.2 The parameter design

The numbers of scaling grades of error, error change
rate and controller output are set as 6-grades. k, is
selected as -16.234 according to conventional design
method of scaling gain. The parameter regions are
assumed aS[-€rax  €ma] = [-10  10], [-€Crax  ECrrasd
=[-4 4].

4.2.1 Choosing of control rule base and membership
function

In order to show universality of the system, linear
fuzzy rule base is selected as shown in Fig.5, which
has seven linguistic terms for each input and outpuit.
The input and output membership functions are
chosen even distribution triangle-shaped with
trapezoid-shaped as shown in Fig.6.
EC=Kgec
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Fig.6 Figure of input and output membership function

4.2.2 Initialization training signal in the process

As we have mentioned in 3.3.1 the training signal for
the initialization process of CMAC is determined
from (6), (7), (8). Then we compared control
performances of the following two cases:

(1) training signa is calculated based on the
conventional scaling factor, that is:
Ko = [Keo Keg] = [6/10 6/4] = [0.6 1.5]

(1) calculated by
Ko(eec) = [Keo(€) Keco(€C)]
= [ 1.62exp(-0.1|e]) 1.5 exp(0.25|ec])] ,
where
be:j./ (S 01,
3= Ne XP(1)/€rmaxo= 1.62,
bec: 1 €Craxo = 0.25,
Aec= Keo= 1.5.

In addition, in order to show advantages of the

PS|NM | NS| z [ PS[PM | PB | PB |[E=Ke
»
>

proposed method, we conducted the third simulation,

(1) using a non-adaptive conventional
controller.

fuzzy

4.3 Smulation results
The smulation results are shown in Fig.7. Inthefigures:

(1) In Fig. 7 (&), rise times and maximum overshoots
of methods (1), (II) are reduced as compared to
method (111).

(2) The robustness of the proposed method becomes
better than that of the conventional method. In Figs. 7
(©), (&), (f), with changing plant parameters, the
results have become diverge in method (111), but the
are kept stable in methods (1), (I1).

(3) In Figs. 7 (c), (e), (f), method (1) shows better
performance than method (1).

(4) Though steady state error are increased when
plant parameters change, method (I1) has smallest
steady state error in the three methods in Figs.7 (b),

(d), (9), ().

Conventional fuzzy control theory is proven
very effective. However, when plant parameters
change, the property of conventional fuzzy controller
becomes unfavorable. By using the proposed method,
better control results is obtained, as compared to
conventional fuzzy control, especially, in cases there
exist modeling errors.

5. Conclusion

In this paper, the scheme of adaptive fuzzy controller
with CMAC-based adaptive scaling factor has been
presented. Then, learning phase of CMAC consists of
two steps: initialization process and on-line learning
process. For initiaization process, two kinds of
training signal have been given, that is, constant
scaling factors and non-linear scaling factor functions.
Simulation results show that by using the proposed
method, control performance can be improved as
compared to conventional fuzzy control. It is also
demonstrated that the proposed methods have
robustness for modeling error.

CMAC network is used only in tuning scaling factors,
so that the design of fuzzy inference rule and
membership function becomes more lenient. For
example, in the simulations, we could select smple
linear control rule and even distributing triangle
membership function.
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Fig.7.Simulation results



