
HIERARCHICAL SUPERVISORY CONTROL OF
DISCRETE EVENT SYSTEMS BASED ON STATE

AGGREGATION

César R. C. Torrico ∗,1 José E. R. Cury ∗,2

∗Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina

P.O. Box 470- 88040/001 - Florianópolis - SC - Brasil

Abstract: This paper presents a hierarchical control theory for discrete event systems
based on state aggregation and advanced control structures. The proposed hierarchical
structure consists of two levels, a low-level represented by the classical model of
Ramadge-Wonham, and a high-level, obtained by state aggregation. In this model,
the high-level events are a subset of the low-level events, but for controller synthesis,
this level will be endowed by advanced control structures as previously introduced by
the authors.Copyright c©2002 IFAC

Keywords: Discrete Event Systems, Supervisory Control, Hierarchical Control.

1. INTRODUCTION

In many application areas, the complexity of the
processes has greatly increased during the last
decades. This essentially because the integration
among the components of the processes constantly
grows to allow the resources to be used in a
more efficient way. Hierarchical control provides
an opportunity to manipulate a complex prob-
lem through its decomposition into smaller sub-
problems for later mount their solutions in a hier-
archical structure. The formalism of hierarchical
control of Discrete Events Systems (DES) was
first introduced by Zhong and Wonham (1990)
using Ramadge and Wonham (1989) framework
and later extended by Wong and Wonham (1996)
to deal with marked languages and blocking is-
sues. In this approach two hierarchical levels are
considered, one associated to the operator and an-
other associated to the manager. The hierarchical
control problem consisted of designing a high level
controller such that the expected behavior in this
level equals the behavior obtained by applying
the hierarchical control. This condition defines the
hierarchical consistence and strong hierarchical
consistence. The difference between the two types
of hierarchical consistencies cited above is that,

1 Supported by CAPES
2 Supported by CNPq under grant number 300953/93-3
and PRONEX 015/98

in the first case there may exist implementable
behaviors not seen as such in the higher level.
In the above cited papers conditions to build
consistent abstractions are given. Nevertheless,
besides the fact that those conditions may be too
conservative, the information channel connecting
both low and high level models has in general
to be refined several times until hierarchical con-
sistence is obtained. On the other hand Caines
and Hubbard (1998) developed an approach for
hierarchical control based on state aggregation.
This approach also presents conditions for strong
hierarchical consistence, but it doesn’t present a
systematic way to obtain this condition. Further-
more, the approach allows only to solve problems
with forbidden states specifications.

In this work a new formalism for hierarchical
control of discrete event systems is introduced.
We keep on two levels of hierarchy: for the low
level we refer to the traditional model of Ramadge
and Wonham; on the other hand a model pro-
posed by Cury et al. (2001) based on advanced
control structures is considered for the high level.
The high level problem is defined on specifica-
tions built from a sub-set of the low-level set of
events considered as relevant to the manager. The
objective is to propose a model for hierarchical
control based on state aggregation, such that the
hierarchical structure, obtained in a simple and
straightforward way, with minimum refinement, is

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

strong hierarchical consistent. A similar work in a
linguistic framework is proposed in (da Cunha and
Cury, 2001).

The paper is organized as follows. Section 2
shortly introduces the problem; the idea of state
aggregation is presented in Section 3 while the
complete high level model is defined in Sec 4; main
results are showed in Sec 5; finally Sec 6 illustrates
the proposed methodology by a simple example of
a transfer line.

2. THE HIERARCHICAL CONTROL
PROBLEM

Given a plant G defined over an alphabet Σ,
and a set of events ΣA ⊂ Σ, the problem is to
obtain an aggregated model for the high level,
defined over ΣA, such that: i) every realizable
specification in the high level equals the image
of a realizable language in the low level; ii) every
realizable language in the low level has a realizable
image in the high level.

In the hierarchical structure the low-level consists
of a plant G and a supervisor S defined over Σ,
and the high-level (aggregated-level) consists of
a plant GA and a supervisor SA, defined over
ΣA ⊂ Σ. These are coupled as shown in Fig. 1.

Com

Low level

High levelSA

ConA

σ ∈ ΣA

GA

σ ∈ ΣA

Con

σ ∈ Σ

S G

Fig. 1. Hierarchical Structure

In Fig. 1, G is the plant to be controlled in the
real world by S, the operator, while GA is an
abstraction of G obtained by state aggregation
and controlled by SA, the manager. The plant G
informs to the high-level only a sub-set of events
(σ ∈ ΣA) considered relevant for the manager,
refreshing the model GA.

To each occurrence of an event σ ∈ ΣA, the
manager SA generates a command (Com) to be
implemented by the operator S. The operator S
receives two information - the command Com of
the aggregated level and the occurrence of events
σ ∈ Σ generated by the plant G - and with these
data he applies a control Con to the plant G. The
control ConA results to be a virtual control, since
the behavior of GA is totally determined by the
behavior of G.

3. STATE AGGREGATION

In the low level, the plant is represented by a
quintuple G = (Σ, X, δ, q0, Qm), where, Σ is the

set of event labels partitioned into controllable
(Σc) and uncontrollable events (Σu), i.e., Σ = Σc∪
Σu, X is the state set, δ : X × Σ −→ X is the
(partially-defined) transition function, q0 ∈ X is
the initial state and Qm ⊆ X is the marked state
set.

To obtain an aggregated model for the high level,
a partition of the state set X, called π-partition,
is first defined. The π-partition is a collection of
subsets of X (called π-blocks) denoted formally by
π = {X1, X2, ..., XN} with

⋃
Xi = X, Xi 6= ∅

and Xi ∩ Xj = ∅ for i 6= j, so that two states
belong to a same block if and only if they are
linked by some string of no relevant events. From
this partition, an abstract model is defined over
the set of relevant events.

Definition 1. (π-aggregated automaton) Given an
automaton G, a set of relevant events ΣA ⊂ Σ,
and a π-partition π = {Xi : xj , xk ∈ Xi ↔
xj , xk ∈ X ∧ ∃s ∈ (Σ − ΣA)∗, δ(xj , s) = xk}, the
π-aggregated automaton is defined as

GA = (ΣA, π, δA, qA
0)

where, ΣA is the set of events, π is the finite
state set corresponding to the π-partition of X,
δA : π × ΣA −→ π is the transition function such
that δA(Xi, σ) = Xj if (∃x ∈ Xi,∃y ∈ Xj :
δ(x, σ) = y), and qA

0 ∈ π is the initial state, such
that q0 ∈ qA

0 .

Marking features for the high level model are
not considered here. In fact GA is used only to
represent admissible sequences of events. Marking
is left to be dynamically defined by the control
structure, as in (Cury et al., 2001).

Given an automaton G and the corresponding π-
aggregated automaton (GA), we define the canon-
ical map Θ : L(G) −→ L(GA), as Θ(ε) = ε and

Θ(sσ) =
{

Θ(s)σ if σ ∈ ΣA

Θ(s) otherwise

for s ∈ Σ∗ and σ ∈ Σ.

The canonical map is naturally extended for lan-
guages as Θ : 2L(G) −→ 2L(GA), Θ(K) =
{Θ(s) : s ∈ K}
Let LA = Θ(L(G)), the mapping to the high-level
of the language L(G), and let L(GA) be the lan-
guage generated by the π-aggregated automaton
GA. Notice that in general LA ⊆ L(GA) since
some strings of L(GA), may not be the image of
feasible strings in the low-level.

Before adhering the necessary control structure
to the high-level, we may have to proceed to a
refinement in GA. For this we have to consider the
two possible following situations of the aggregated
automaton:

i) GA is non-deterministic;

ii) There exist Xi, Xj ∈ π and σ ∈ ΣA such
that δA(Xi, σ) = Xj , and such that ∃ x, y ∈
Xi, and z, w ∈ Xj , z 6= w, with δ(x, σ) = z
and δ(y, σ) = w .

If any of the above cases arises in GA, a refinement
procedure is done by renaming each event σ ∈ Σ
that causes i) or ii) to occur, with events σ′, σ′′,
This refinement allows the model to eliminate
any possible ambiguity on the information flowing
through the low to high level channel. It may
be done locally, without considering dependency
between possible multiple instances of refinement
for the same original event since it is assumed that
the high level specifications remain to be given in
terms of the original alphabet ΣA.

4. HIGH LEVEL MODEL

In this section the high level model will be com-
pleted by introducing its control structure. As
cited before this control structure will also incor-
porate the marking attributes of the high level
plant. The resulting model will be as the one
introduced by Cury et al. (2001).

4.1 Preliminaries

The In-set states I(Xi) of an element Xi of a
partition π is the set of states in Xi that are, either
the initial state q0 or states directly accessible
with a relevant event, i.e.:

x ∈ I(Xi) ←→ (x ∈ Xi) ∧ ([x = q0] ∨
[∃x′ ∈ X , ∃σ ∈ ΣA , δ(x′, σ) = x])

(1)

Every block of the partition results to be a part
of the system that can be represented by another
automaton. For each block Xi ∈ π, an automaton
Hi is defined as

Hi =
(
(Σ− ΣA), Xi, I(Xi), δi, Qim

)
(2)

where, (Σ − ΣA) is the set of event labels, Xi

is the state set, I(Xi) is the initial state set,
δi : Xi×(Σ−ΣA) −→ Xi is the partial transition
function such that δi(x, σ) = δ(x, σ) if x ∈ Xi,
σ ∈ (Σ − ΣA) and Qim is the marked state set
such that Qim = Xi ∩Qm.

Given an automaton Hi each state xj ∈ I(Xi)
defines a subsystem of Hi is as an automaton

Hij = ((Σ− ΣA), Xij , xj , δij , Qijm) (3)

where, (Σ − ΣA) is the set of event labels, xj is
the initial state, Xij is the state set such that
Xij = {x ∈ Xi : x = δ̂i(xj , u), u ∈ (Σ − ΣA)∗},
δij is the partial transition function such that(
δij(x, σ) = δi(x, σ) if x ∈ Xij , σ ∈ (Σ− ΣA)

)
, and

Qijm is the marked state set such that Qijm =
Qim ∩Xij .

Also, an augmented automaton H+
i is defined

by adding an extra marked state to Hi which
receives transitions corresponding to the active set
of events of Xi in GA, i.e,

H+
i = (Σ, X+

i , I(Xi), δ+
i , Q+

im) (4)

where, Σ is the set of event labels, X+
i is the state

set such that X+
i = Xi ∪ {x+}, I(Xi) is the initial

state set, δ+
i is the partial transition function such

that (δ+
i (x, σ) = δ(x, σ) if x ∈ Xi, σ ∈ (Σ−ΣA))

and (δ+
i (x, σ) = x+ if x ∈ Xi, σ ∈ ΣA,

δ(x, σ) is defined), and Q+
im is the marked state

set such that Q+
im = Qim ∪ {x+}.

Analogously, a subsystem of H+
i is defined for each

state xj ∈ I(Xi) of H+
i , as an automaton

H+
ij =

(
Σ, X+

ij , δ
+
ij , xj , Q

+
ijm

)
(5)

where, Σ is the set of event labels, xj is the initial
state, X+

ij is the state set such that X+
ij = {x ∈

X+
i : x = δ̂+

i (xj , u), u ∈ Σ∗}, δ+
ij is the partial

transition function such that δ+
ij = δ+

i /X+
ij and

Q+
ijm is the marked state set such that Q+

ijm =
Q+

im ∩X+
ij .

Let Hij and H+
ij be subsystems of Hi and H+

i

respectively. The set of subsystems between Hij

and H+
ij , is defined as

Sij = {Hs :
[
L(Hij) ⊆ L(Hs) ⊆ L(H+

ij)
]∧

[Lm(Hs) = Lm(H+
ij) ∩ L(Hs)]} (6)

In each automaton Hs ∈ Sij the transitions to
x+ ∈ X+

ij correspond to a subset of the set of
active events of Xi in GA reachable from the input
state xj ∈ I(Xi).

Two sets of controllable languages with respect to
L(H+

ij) are introduced as follows:

Cij = {Kc ⊂ Σ∗ : Kc 6= ∅,
Kc = sup CF(Lm(Hs), H+

ij),
Hs ∈ Sij}

(7)

and

Dij = {Kd ⊂ Σ∗ : Kd 6= ∅,
Kd = sup CF [Lm(Hs)− Lm(Hij),H+

ij],
Hs ∈ Sij}

(8)

where sup CF(¦,2) denotes the supremal con-
trollable and Lm(2)-closed language with respect
to L(2), contained in ¦ (Ramadge and Won-
ham, 1989).

Consider the set

Eij = Cij ∪ Dij (9)

Each element K ∈ Eij corresponds to the least
restrictive behavior within the block Xi in the low
level that can be controlled from xj ∈ I(Xi), to
generate Θ(K) − {ε} as the next admissible set
of events in the the high level. Behaviors in Dij

all don’t pass through marked states in Xi, while
behaviors in Cij that are not in Dij all pass by
at least one marked state of Xi. The computation
of Eij provides the base for the definition of the
high level control structure to be introduced in
the following.

4.2 High level control structure

Given Eij a set of pairs Γij ∈ 2ΣA × {M, N} is
defined as

Γij = {(γ, #) : γ = [Θ(K) − {ε}], K ∈
Eij , and # = M if (ε ∈ Θ(K)), else # = N}
The high level control structure is defined as a
map Γ : (π, X) → 22ΣA×{M,N}, which associates
to each block Xi ∈ π and input state xj ∈ I(Xi)
a set of control patterns Γij ⊆ 2ΣA × {M,N}.
(γ, #) ∈ Γij is a control pattern valid in Xi when
entering it through xj with,

(1) γ ⊂ Σ being a set of enabled events after Xi;
(2) # = M being a marking attribute meaning

that the current past string in L(GA) is con-
sidered a task of the system, or equivalently,
setting Xi currently as a marked state; and

(3) # = N meaning that the current past string
L(GA) is not considered a task of the system,
or equivalently, setting Xi currently as an
unmarked state.

Theorem 2. Γ represents a control structure as
defined in (Cury et al., 2001), i. e., each Γij ∈ Γ
satisfies:

(1) (γ1, N), (γ2, N) ∈ Γij −→ (γ1 ∪ γ2, N) ∈ Γij

(2) (γ1, M), (γ2,#) ∈ Γij −→ (γ1 ∪ γ2,M) ∈
Γij , # = M, N 3

At this point, the pair D = (L(GA), Γ) provides
a complete high level model. Nevertheless the
control structure Γ as defined depends on Xi

and xj ∈ I(Xi). Once the information of the
input state cannot be seen in the π-automaton,
a refinement in GA is then proposed in order to
turn Γ into a state dependent control structure.

To represent the π-automaton with a state depen-
dent control structure each block Xi is splitted
into a set of high level states, each one for a
subset of I(Xi) sharing a common set of control
patterns. The resulting high level automaton GA

s

is guaranteed to have a state dependent control
structure.

3 The proofs are omitted due to lack of space. Further
information available in (Torrico and Cury, 2001)

The number of states of the automaton GA
s is,

in the worst case, the sum of input-states of the
blocks defining the states of GA. From now on
GA

s is referred as GA as well as the set of control
patterns associated to a new state Xi of GA is
referred as Γi.

Given a controlled DES D = (L(GA), Γ) repre-
senting the high level plant and control structure
as defined above, a supervisor fA for D is defined
as a map, fA : L(GA) → 2Σ×{M, N}. The behav-
ior of the closed loop system fA/D is represented
by a pair of languages, a closed language L(fA/D)
and a marked language Lm(fA/D). The closed
language L(fA/D) is defined recursively as

(1) ε ∈ L(fA/D)
(2) sσ ∈ L(fA/D) ←→ s ∈ L(fA/D) ∧ sσ ∈

L(GA) ∧ σ ∈ γ with fA(s) = (γ, #)

and the marked language Lm(fA/D) as

s ∈ Lm(fA/D) ←→ s ∈ L(fA/D) ∧ fA(s) =
(·,M)

where (γ, #) ∈ Γi for δA(qA
0 , s) = Xi.

In general Lm(fA/D) ⊆ L(fA/D), and the su-
pervisor is said to be nonblocking if Lm(fA/D) =
L(fA/D).

4.3 High level supervisory control problem

In order to propose a solution for a high level
supervisory control problem the concept of Γ-
compatibility (Cury et al., 2001) is introduced in
the context of the aggregated model.

Definition 3. (Γ-compatibility) The language K ⊆
L(GA) is Γ-compatible w.r.t L(GA) if, and only if,
K = ∅ or

(1) (∀s ∈ K) (∃(γ, M) ∈ Γi) : γ ∩ ΣL(GA)(s) =
ΣK(s), and

(2) (∀s ∈ K − K) (∃(γ,N) ∈ Γi) : γ ∩
ΣL(GA)(s) = ΣK(s)

where δA(qA
0 , s) = Xi and ΣL(s) represents the

set of active events in L, after s.

The following theorem by Cury et al. (2001) shows
that Γ-compatibility is a necessary and sufficient
condition for the existence of a nonblocking su-
pervisor to implement a given language K in a
controlled DES D = (L(GA), Γ).

Theorem 4. (Existence of Supervisors) Given D =
(L(GA),Γ) and given a language K ⊆ L(GA),
with K 6= ∅, then there is a nonblocking super-
visor fA for D, such that Lm(fA/D) = K, if only
if K is Γ-compatible w.r.t L(GA).

Cury et al. (2001) proved the existence of the
supremal Γ-compatible language contained in a

given language K, as well as provided an algo-
rithm for its synthesis and the synthesis of the
corresponding supervisor.

5. MAIN RESULTS

The following result establishes that the aggre-
gated model as constructed above leads to a
strong consistent hierarchical system.

Theorem 5. Given a low level plant G, a set of
relevant events ΣA ⊂ Σ and an aggregated system
D = (L(GA),Γ) as proposed, there exists KA ⊆
L(GA), Γ-compatible w.r.t L(GA) if and only if
there exists K ⊆ Lm(G) controllable w.r.t L(G)
and Lm(G)-closed such that Θ(K) = KA.

Given a high level Γ-compatible language KA ⊆
L(GA) and a nonblocking supervisor fA such
that Lm(fA/D) = KA, a procedure to compute
a low level nonblocking supervisor f such that
Θ(Lm(f/G)) = KA is presented in the following.

By construction of the high level control structure,
for each high level control pattern (γ, #) ∈ Γij as
initially introduced there exists in the low level
a language J ⊂ L(H+

ij) such that J ∈ Eij and
Θ(J)− ε = γ.

Let fJ
ij : J −→ 2Σ be a nonblocking supervisor

such that Lm(fJ
ij/H+

ij) = J .

The following algorithm translates the implemen-
tation of a high level supervisor fA : L(GA) −→
22Σ×{M,N} into a low-level supervisor f : L(G) −→
2Σ.

Algorithm 1. Obtaining the low level supervisor.

Input: fA

(1) For s ∈ L(G), such that Θ(s) = ε,
f(s) = fJ

0,0(s), where J is such that (Θ(J) − ε) = γ

and

[
(ε ∈ Θ(J) if fA(ε) = (γ, M)) or (ε 6∈ Θ(J) if

fA(ε) = (γ, N))

]
.

(2) For s ∈ L(G), with s = s′αs′′, s′ ∈ Σ∗, α ∈
ΣA, s′′ ∈ (Σ − ΣA)∗, such that Θ(s) ∈ K

A
, and

δ(x0, s′α) = xj ∈ I(Xi),
f(s) = fJ

ij(s
′′), where J is such that (Θ(J)− ε) = γ

and

[
(ε ∈ Θ(J) if fA(θ(s)) = (γ, M)) or (ε 6∈ Θ(J)

if fA(θ(s)) = (γ, N))

]
.

Output: f

Theorem 6. Given a nonblocking supervisor fA :
L(GA) −→ 2Σ × {M, N} with Lm(fA/D) = KA,
and f : L(G) −→ 2Σ as computed by algorithm 1,
it’s true that, Θ(Lm(f/G)) = KA.

There are two possible mechanisms to implement
the hierarchical control scheme. The first one is
an off-line procedure that computes the whole

low level supervisor f from a given high level
supervisor fA and then shuts off the command
channel Com. In this scheme the information
channel from the low to high level may be kept
just to allow the manager to monitor the resulting
abstracted behavior of the system. The second
way of implementing the hierarchical control is
by the following on-line procedure: the high level
supervisor applies through the command channel
Com, a control input (γ, #) ∈ Γi when entering
state Xi after the occurrence of a relevant event
σ ∈ ΣA; the low level activates the local supervisor
fJ

ij as a function of the current low level state
xj ∈ I(Xi) and the local language J ∈ Dij such
that Θ(J) = γ if # = N , or J ∈ Cij − Dij such
that Θ(J)− {ε} = γ if # = M .

6. EXAMPLE: TRANSFER LINE WITH
RE-ENTRANT FLOW

Consider the transfer line consisting of two Ma-
chines M1, M2 followed by a test unit TU , linked
by buffers B1 and B2, as shown in Figure 2. This
example was first treated by Wonham (1998).

M1 M2 T UB2B1

Fig. 2. Transfer line

Automata for the system components are shown
in Fig. 3(a).

521

M1 :

43

M2 :

81

TU :

60

62 82
5

2, 82

3

E1 :

E2 : 4

(a) (b)
Fig. 3. (a)Model of the system components and

(b) Specification for the buffers.

The controllable events 1 and 3 represent the
start of machines M1 and M2, respectively, and
the uncontrollable events 2 and 4 represent the
end of operations. The start of the test unit
is represented by the controllable event 5 and
the signs of decision of “passes” or “fails” are
represented by the events 60, 81 respectively. In
case of pass test, the workpiece is sent to the
system output (event 62); in case of fail test, it
is returned to B1(event 82) for reprocessing by
M2. Buffers are considered to be of capacity one.
Specifications for no overflow and no underflow
of the buffers are represented by the automata in
Fig. 3(b). Fig. 4 presents a possible solution to
this problem. This automaton is now adopted as
a plant G for hierarchical control purposes.

Let us assume that a manager is interested only
in controlling the entrance and exit of pieces
in the system. Thus, 1, 60, 81 are considered as
the relevant events for the high level. A first

aggregated model built as in Section 3is shown
in Fig. 4 where event 1 after X0 needed to be
redefined as 1′ and 1′′.

X0

1′′

1′ 2 3 4 5

62 62 62 62 62
2 3 4

0 1 2 3 4 5

8 9 10 11

82

6

7

G :
81

60

X1 Γ0,0 = {({}, M); ({1′}, M)}
Γ0,7 = {({}, M); ({1′}, M);

({1′′}, M); ({1′, 1′′}, M)}
Γ1,1 = {({60}, N); ({60, 81}, N)}
Γ1,8 = {({60}, N); ({60, 81}, N)}
Γ1,6 = {({60}, N); ({60, 81}, N)}

GA : 1′, 1′′

60
X0 X1

81

Fig. 4. Plant and its aggregation.

In the high-level automaton (Fig 4) observe that
the block X0 presents two different control pat-
terns for the input states 0 and 7 (Γ0,0 6= Γ0,7).
The automaton is then refined following the pro-
cedure presented in Section 4. Fig. 5 shows the
resulting high level model with its corresponding
state dependent control structure.

Y2

GA :
Y0 Y1

81

60
1′′

1′

1′

Γ(Y0) = Γ0,0 = {({}, M); ({1′}, M)}
Γ(Y1) = Γ1,1 = Γ1,8 = Γ1,6 =

{({60}, N); ({60, 81}, N)}
Γ(Y2) = Γ0,7 =

{({}, M); ({1′}, M); ({1′′}, M); ({1′, 1′′}, M)}

Fig. 5. High level Plant with state dependent
control structures.

(Fig 6) represents a high level specification which
establishes that if a piece is refused twice by the
test unit, it is forced to pass and the system must
stop.

60

1 81 81 60

60
0 1 2 3 4

E :

Fig. 6. Specification.

Fig. 7 shows the optimal solution for the high level
problem as computed by applying the supremal
Γ-compatible algorithm as in (Cury et al., 2001).

81

1′′1′
1′

sup CM(K) :

(Y2, 0)

(Y0, 0)

(Y0, 4)(Y1, 3)(Y1, 2)(Y1, 1)

5
60

60

43210
6081

Fig. 7. Supremal Γ-compatible language.

Finally, Fig. 8 shows the global low level imple-
mentation of the optimal hierarchical supervision.

1′

1′′1′

62

60

60
62 60

81
82345

54382815432

Fig. 8. Low-level implementation

7. CONCLUSIONS

The state aggregation procedure proposed in this
work allows to construct hierarchical consistent

models for DES supervision in a straightforward
way. The limitation of the presented methodology
relies mainly in the fact that a large number of lo-
cal supervisory control problems has to be solved
in order to construct the high level control struc-
ture, although these are in general performed over
small subsystems. Also, modularity may be a way
to reduce this complexity. In fact, hierarchical sys-
tems are in general large scale systems modelled
through the composition of smaller subsystems
and characterized by having several specifications.
This problem was already treated in (Wong and
Wonham, 1998). The authors are currently inves-
tigating the possibility of incorporating results on
local modularity as proposed in (de Queiroz and
Cury, 2000) in the hierarchical control approach
as introduced here.

8. REFERENCES

Caines, P.E. and P.J. Hubbard (1998). A state
aggregation approach to hierarchical supervi-
sory control with applications to a transfer-
line example. In: Proceedings of the WODES
98. Cagliary, Italy. pp. 2–7.

Cury, J.E.R., C.C. Torrico and A.E.C. da Cunha
(2001). A new approach for supervisory con-
trol of discrete event sistems. In: Proceedings
of the European Control Conference 2001.

da Cunha, A.E.C. and J.E.R. Cury (2001). Hier-
archically consistent controlled discrete event
systems. Article submited to the IFAC World
Congress 2002.

de Queiroz, M. H. and J. E. R. Cury (2000). Mod-
ular supervisory control of large scale discrete
event systems. Discrete Event Systems. Anal-
ysis and Control (WODES) pp. 103–110.

Ramadge, P.J. and W.M. Wonham (1989). The
control of discrete event systems. Proceeding
of the IEEE 77(1), 81–98.

Torrico, C.R.C. and J.E.R. Cury (2001). Controle
supervisório hierárquico de seds: Uma abor-
dagem baseada na agregação de estados.
www.lcmi.ufsc.br/∼torrico/trabalhos/Qualify.zip.

Wong, K.C. and W.M. Wonham (1996). Hierar-
quical control of discrete-event systems. Dis-
crete Event Dynamical Systems 6, 241–273.

Wong, K.C. and W.M. Wonham (1998). Modu-
lar control and coordination of discrete-event
systems. Discrete Event Dynamical Systems
8(3), 247–297.

Wonham, W.M. (1998). Notes on Control of
Discrete-Event Systems. Course Notes for
ECE 1636F/1637S. Revision 98.09.01.

Zhong, H. and W.M. Wonham (1990). On the
consistency of hierarchical supervision in
discrete-event systems. IEEE Transactions
on Automatic Control 35(10), 1125–1134.

