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Abstract: The control configuration design involves the choice of measurements and/or 
manipulations to be used in a feedback control loop. The selected variables should have 
an effect on the controlled outputs. The control law will result in unnecessary complex 
systems if the control configuration is not adequately considered. The approach studied 
here is employed to design a control configuration for the PI multivariable controller for 
the gas turbine engine, using multiobjective genetic algorithm as an approach for 
optimization and preference articulation.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
High performance gas turbine engines (GTE) require 
complex controllers to maintain system stability and 
achieve strict performance and design criteria. The 
engine dynamics change drastically with changes in 
operating conditions of altitude and forward speed of 
the aircraft. These also change the required thrust 
that maintains these conditions and performs 
required maneuvers. These various operating points 
combine to form the flight envelope for a particular 
engine configuration. This indicates that the system 
dynamics vary with time and changes in operating 
demands and ambient conditions. The engine core 
endures very high temperatures and pressures. The 
engine control system has to protect against 
breaching the physical limits of the engine, 
maximum temperature for example, as well as the 
actual stability and performance requirements. The 
engine is inherently non-linear with multiple inputs 
and outputs. 
 
Computer aided control system design together with 
optimization based methods are extensively used to 
design suitable controllers to meet the desired 
performance specification. A typical control system 
for a gas turbine engine would include a set of 
controllers, PI say, for each operating point. 
Designing for each operating point requires 

satisfaction of multiple objectives. These objectives 
are often conflicting or competing. An elegant and 
powerful method for dealing with multiple objectives 
is the concept of Pareto optimality. Using this 
approach, the designer is no longer searching for a 
single optimum, rather a compromise satisfying the 
various objectives. Genetic algorithms (GAs) are 
amenable to multiobjective optimization (MO). This 
is because a GA works on a population of solutions 
instead of the traditional single point search. The 
search with this population can help achieve a faster 
and more comprehensive mapping of the trade-off 
hyper surface. 
 
Genetic algorithms have been applied to control 
engineering in a variety of ways: control system 
design, robust control, multiobjective optimisation, 
system identification, system integration and real-
time and adaptive control (Jones and De Moura 
Oliveira, 1995; Jones and Lin, 1998; Obayashi, 1996; 
Klaassen and Litz, 1998; Pashkevich and Pashkevich, 
1998; Tan et al., 1995; Moin et al., 1995; Linkens 
and Nyongesa, 1996). 
 
Samar (1995) applied some mathematical tools to 
tackle the output measurement selection problem. 
Chipperfield and Fleming (1996) applied a 
multiobjective genetic algorithm (MOGA) to the 
SIMULINK linear Spey engine model for system 
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integration. The approach studied here is employed 
to design a control configuration for the PI 
multivariable controller for the GTE. 
 
 

2. MULTIOBJECTIVE GENETIC ALGORITHM 
 
Multiobjective or multicriteria optimization and 
decision making refers mainly to simultaneous 
optimization in order to achieve optimal trade-off 
solutions satisfying various objectives. These 
objectives tend to be conflicting or competing. There 
is not usually one unique solution but rather a family 
of compromise solutions that need to be analyzed by 
a decision maker. 
 
Multiobjective optimization can be expressed as 
follows: 
Minimize: ( ) ( ) ( ) ( ){ }F x f x f x f xn= 1 2, ,...,  

Subject to: ( )g x ≤ 0  

Where ( )g x  is the constraint vector and ( )f xi  is the 
i-th objective function. 
 
The set of trade-off solutions that express the best 
performance in all of the objectives is known as the 
Pareto or the non-dominated set. Any attempted 
improvement for a member of this set in one of the 
objectives will result in deterioration in performance 
in one or more of the other objectives. 
 
The MOGA combines the characteristics of a 
powerful evolutionary optimization strategy with the 
concept of Pareto optimality to produce solutions 
illustrative of a problem’s trade-off set. A MOGA 
evolves a population of solution estimates thereby 
conferring an immediate benefit over conventional 
multiobjective optimization methods (Fonseca and 
Fleming, 1995). 
 
The work described in this paper uses the GA 
Toolbox (Chipperfield, et al., 1995) for Matlab 
together with the implementation of a MOGA as 
proposed by Fonseca and Fleming (1993). This tool 
allows the designer a simple but powerful method for 
articulating preferences progressively and interacting 
with the design process in real time to achieve the 
best results and gain further insight into the problem 
in question. 
 
 

3. THE GAS TURBINE ENGINE 
 
The engine under consideration is the Rolls-Royce 
Spey engine, which is a two-spool reheated turbofan, 
used to power military aircraft (Fig. 1). Linear and 
non-linear SIMULINK models are available for 
this engine.  
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Fig. 1. The aero-engine 
 
The engine has three inputs: fuel flow (WFE), 
exhaust nozzle area (A8) and inlet guide vane (IGV). 
Sensors provided from outputs of the engine model 
are high and low pressure spool speed (NH, NL), 
engine and fan pressure ratios (EPR, FPR) and Mach 
number (DPUP). These variables can be used to 
provide closed-loop control of the input variables. 
For the purpose of this work one of the engine set 
points is considered corresponding to 87% of thrust 
demand, at zero altitude and zero Mach number. For 
this operating point the system is required to meet the 
following (Silva, 1999): 
 
•  XGN ≥ 48.64 kN 
•  TBT ≤ 1713 oC 
•  LPSM ≥ 10% 
•  XGN rise time (XGN Tr.) ≤ 1.0 s 
•  XGN settling time (XGN Ts.) ≤ 1.4 s 
where XGN is the engine gross thrust, TBT is turbine 
blade temperature, LPSM is the low pressure 
compressor surge margin. 
 
The following physical constraints (engine 
mechanical limits) are used to maintain the stability 
of the simulation: 
 
•  NL < 102% 
•   0.25 < A8 < 0.34 m² (dry thrust limits) 
 
The following multiple objectives were also 
addressed by MOGA: 
 
•  minimize steady-state error for NH, NL and A8 
•  minimize overshoot/undershoot for NH and NL. 
 
 

4. CONTROL CONFIGURATION DESIGN 
 
Modern engineering systems exhibit two distinct 
trends which have important implications for control 
theory (Reeves, et al. , 1991): 
•  the systems requiring control are becoming 

increasingly complex, 
•  increasingly stringent accuracy requirements are 

being imposed on the controlled systems. 
 
As a result of these trends the critical issues for 
control systems design have become complexity and 
uncertainty. They are the premier issues in control 
system design for modern engineering systems. 
Correspondingly, an appropriate paradigm for control 
system design might be stated as follows: minimize 



 

     

control system complexity subject to the achievement 
of accuracy specifications in the face of uncertainty. 
 
An important phase of a multivariable control design 
is the control law. However, if control configuration 
design is not addressed adequately before control law 
design begins, unnecessarily complex control 
systems may result. For industrial problems usually 
the number of candidate measurements and/or 
manipulations to find the best control configuration 
is very high. The system has many outputs to be 
controlled and usually has limited number of inputs. 
The selection of manipulations and measurements is 
related to disturbance rejection, plant stabilization 
and reference tracking. 
 
It is desired to select measurements, which have a 
strong relationship with the controlled outputs, or 
which may quickly detect a major disturbance and 
which, together with manipulations, can be used for 
local disturbance rejection. 
 
The selected manipulations should have an effect on 
the controlled outputs, and should have “close” 
dynamic response to the outputs and measurements. 
If the plant is unstable, then the manipulations must 
be selected such that the unstable modes are state 
controllable, and the measurements must be selected 
such that the unstable modes are state observable. 
 
 

5. INPUT-OUTPUT PAIRINGS FOR THE GTE 
 
The most important objective of the engine control 
system is to control thrust whilst regulating 
compressor surge margin. But compressor surge 
margin and thrust cannot be measured directly. Other 
measurable engine parameters are used to control 
these two most important variables after pre-set 
transformations. For the engine under consideration, 
a controller is planned to control three variables 
independently: XGN, LPSM and NH. For the three 
engine inputs, only three outputs can be controlled 
independently (Skogestad and Postlethwaite, 1995; 
Reeves, et al., 1991). 
 
The first step is to choose from the available 
measurements, the ones that are in some sense better 
for control purposes. Any extra outputs, cannot be 
controlled independently, but may be made effective 
use of by the controller. 
 
A good understanding of the plant’s behavior can 
simplify the control structure design problem. Some 
candidate outputs may be preferred over others. 
Regarding the GTE control structure design, it is 
known that the static and total pressure ratios behave 
similarly, and that static pressures are easier to 
measure than total pressures (Samar, 1995). Taking 
account of the available sensors provided from 
outputs of the SIMULINK model, the choice of the 
five output measurements is made. For each one of 
the five output measurements, a look-up table 
provides its desired optimal value, the reference 
value, as a function of the operating point. 
 

Engine thrust (one of the parameters to be controlled) 
can be defined in terms of NL, engine pressure ratio 
(EPR) and NH. One of these measurements gives 
better performance and is to be selected. Similarly, 
either the fan pressure ratio (FPR) or the by-pass 
Mach number (DPUP) can represent LPSM, and a 
selection between these two has to be made. The 
third output is NH, which is also important to be 
maintained within safe limits. NH is actually the HP 
compressor spool speed made dimensionless by 
dividing by the square root of the total inlet 
temperature and scaled so that it is a percentage of 
the maximum spool speed at a standard temperature 
of 288.15°K. 
 
The outputs were subdivided into three subsets 
(Table 1), according to the input to be used for 
controlling the three variables of interest. Table 2 
shows the six-candidate output sets resulted by 
subdividing the available outputs into three subsets 
and selecting one output from each subset. 
 

Table 1 Possible input-output pairings 
 

Engine inputs Feedback control outputs 
WFE NL, NH, EPR 
A8 FPR, DPUP 

IGV NH 
 
 

Table 2 Six candidate outputs set 
 

Set Number Candidate controlled output 
1 EPR, DPUP, NH 
2 NL, DPUP, NH 
3 NH, DPUP, NH 
4 EPR, FPR, NH 
5 NL, FPR, NH 
6 NH, FPR, NH 

 
The approach studied here is employed to design a 
control configuration for the PI multivariable 
controller for the GTE. MOGA is used in order to 
establish the best choice amongst six different 
configurations proposed. Each of these 
configurations is characterized by a set of PI 
parameter gains to be optimized by the MOGA. The 
optimization for the choice of configuration is done 
simultaneously by adding another optimization 
parameter which is a flag value representing a 
particular configuration. 
 
 

6. MOGA SEARCH FOR BEST PI CONTROL 
CONFIGURATION 

 
A MOGA was used to implement the input-output 
pairings according to Table 1. Six different models 
for the six different candidate controlled output 
choices (Table 2), were evaluated by the algorithm to 
find the best configuration for the engine for control 
purposes, and a set of optimal controller gains for the 
two PI controllers, which are into the WFE and A8 
loops respectively. The algorithm aimed at finding 
the best set of these controllers in one of the six 
different combinations of input-output pairings. 



 

     

The controller parameters were encoded as 17-bit 
Gray-coded chromosome constructed of 5 sections 
(Fig. 2). The last section is a flag that gives the value 
corresponding to the one of the six engine models to 
be evaluated (Table 2). The first two sections give 
the values for the proportional and integral gains 
respectively for the fuel flow loop, and the next two 
sections give the values of the gains for the nozzle 
area loop. Standard two-point crossover and 
mutation are used. The MOGA parameters for 
selection, crossover and mutation probabilities are as 
detailed in Table 3. All the objectives were assigned 
the same level of priority. All constraints were 
assumed to have the same level of priority. Gain 
parameters in the interval [10-5, 1) were 
logarithmically mapped onto the set of possible 
chromosome values. The setting of the MOGA 
parameters, although of importance, is not seen as a 
critical issue. 

 

P1 I1 P2 I2 flag
 

 

Fig. 2. General chromosome structure 
 
Table 3 MOGA parameters for control configuration 

design 
 

MOGA parameters 
Selection method SUS 
Crossover probability 95% 
Mutation probability 5% 
Selective pressure -1.5 
Population size 80 individuals 
Number of generations 160 generations 

 
 

7. INPUT-OUTPUT PAIRING RESULTS 
 
The optimization of the controller assumes no a 
priori knowledge of the controller parameter values 
apart from that implicitly used in setting the 
parameter ranges. 
 
After 160 generations of 80 individuals each, MOGA 
generated 136 non-dominated solutions for the two 
sets of PI controller gains. It was found that the best 
performance was for structures 1, 2 and 3 (Table 2). 
109 solutions were for structure 1, 22 for structure 2, 
and 5 for structure 3. None was for structures 4, 5 or 
6. 
 
Considering all the objectives and constraints, all the 
136 final solutions are equivalent. Further 
considerations can be made in order to identify 
particular controllers and/or configurations as the 
most suitable designs. The objectives representing 
the steady-state errors are all catered for adequately 
by all solutions and are thus ignored. The 136 
solutions are now further ranked but only using the 
first 5 objectives. Other choices can be made 
according to whether a faster response is required or 
higher thrust rating, etc. A choice is made here to 
choose controllers that have the lowest TBT. An 

important observation has to be stressed here is that 
all of the original non-dominated solutions offer 
similar performances. The filtering approach used 
here is not intended to signify superior performance 
for the final controller. Rather, it is an aid to 
choosing one solution for convenience. 
 
Fig. 3 shows the conceptual engine model for the 
new configuration designed. The model has two PI 
controllers, using fuel flow and nozzle area inputs to 
control EPR and DPUP outputs respectively. The 
input signal IGV is scheduled against the measured 
values of NH. Using a MOGA with the PI controller, 
it was found the outputs EPR, DPUP and NH to be 
the best for control purposes of XGN, LPSM and NH 
respectively. This is in agreement with the findings 
in Samar (1995). 
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Fig. 3. Conceptual Spey model for the new 
configuration 

 
Fig. 4 shows the trade-off graph of the objective 
values for the chosen solution of the PI controllers of 
the new control configuration, and the objective 
values for the Rolls-Royce set of parameters for the 
PI controllers. 
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Fig. 4. Trade-off graph for two solutions for the 

control configuration of the GTE control system. 
 
Fig. 5-8 show the engine step responses for the 
outputs XGN, NH, LPSM and TBT for the GTE 
simulated for the Rolls-Royce (RR) and the new 
configurations of the PI controller. All the responses 
are plotted against time in seconds, and the response 
values are all normalized such that unity represents 
the desired response. 
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Fig. 5. XGN performance 
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Fig. 6. NH performance 
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Fig. 7. LPSM performance 
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Fig. 8. TBT performance 
 

The controllers for both the RR and the new 
configurations perform well in terms of rise time, 
settling time and steady state accuracy. The 
responses for XGN and NH are slightly faster for the 
RR configuration. The controller for the new 
configuration performs better for TBT and LPSM 
responses. Since, for both cases, the design 
specifications are satisfied, the solution taken here is 
not intended to signify superior performance for all 
the objectives. A choice was made here for a 
controller that gives the lowest TBT transient, as 
previously stated. 
 
 

8. CONCLUDING REMARKS 
 
This work presented a very powerful, yet rather 
simple, evolutionary computing approach for 
multivariable non-linear control configuration 
design. This approach uses a MOGA for optimization 
and multiobjective selection and preference 
articulation. This framework enables the designer to 
search a very complex design space without any need 
for assumed knowledge or gradient information. This 
flexibility allows more designs to be evaluated, 
taking into account more realistic performance 
optimizing objectives. 
 
Directly designing the control system on a non-linear 
model in this way has many benefits, including 
preventing controllers that violate any of the 
system’s physical constraints being assigned a good 
fitness value. 
 
More work needs to be done on the following: 
•  to investigate the use of this technique to 

optimize the control configuration of the control 
system for the complete flight envelope of 
operating conditions, 

•  incorporating more performance measures, 
•  using other control structures, 
•  introducing other disciplinary objectives for an 

integrated design approach. 
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