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Abstract: This paper investigates the temporal behaviour of the Java run-time 
environment for real-time control system applications. A representative process controller 
is used as a case-study, and has been implemented in Java according to a number of 
proposed generic software architectures. These are assessed upon several general purpose 
run-time platforms, before extending the investigation to a claimed real-time Java 
environment. The investigation is then furthered, by compiling the Java into native code, 
in an attempt to improve execution time. The results prove surprising and indicate further 
directions in which to progress this technology. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
This paper describes work that forms part of the 
PiCSI (Process Control Systems Integration) 
research programme that collaborates with 
companies involved in the process control industries, 
including: OAC, Eurotherm and Wind River 
Systems. It has been found that the process control 
industries are moving away from proprietary control 
solutions, and are interested in exploring fully 
decentralised distributed control systems (FDDCS), 
exploiting emerging SMART remote I/O technology. 
Industry estimates material cost savings to be in the 
range of 30-80% using this scheme. However, the 
scheme is not easily realised due to the increased 
design complexity, and requires the support of design 
tools and modern software technologies, possibly 
including Java (Bass, et al., 2000). 
 
Java has often been mistaken as a language for web 
technologies only; of course it is much more. A 
general purpose programming language, object-
oriented, heavily typed, distributed, robust, 
multithreaded, reusable code and with great strengths 
in portability (Horstmann, et al., 1997). Real-time 
systems engineers have regarded Java as an attractive 
language for all these features, but have been 
fundamentally unable to embrace the technology, as 
it cannot capture the temporal determinism required 
by these systems. A number of impacting issues have 
been raised in the real-time community in this 
regard, such as memory management, scheduling, 
inter-process communications and synchronisation. 

Java has been selected as the real-time target 
language for the PiCSI programme.   
 
This paper will continue with a discussion of 
background material and industrial developments 
followed by an examination of the experimental 
approach, software architectures and the 
development environment used. Results are 
presented next and the paper will ends with 
conclusions and a discussion on future work. 
 

2. BACKGROUND 
 
The typical run-time environment for Java is unlike 
that for most other languages. To understand this, 
consider Fig. 1, it outlines the usual layers in the Java 
environment. The Java application sits at the top 
level of the architecture. Here, the application code 
does not usually run natively, it runs on a virtual 
machine, the Java virtual machine (JVM). The output 
of compiled Java source code are byte-codes which 
can be considered analogous to machine instructions. 
It is these byte-codes that are executed, or more 
accurately, interpreted by the JVM. Simply stated, a 
JVM can be seen as a software abstraction of a 
computer. 
 
The JVM provides the portability of Java, as any 
hardware platform can execute Java providing it has 
a conforming JVM. The JVM includes mechanisms 
such memory management and scheduling. The JVM 
in turn calls on the services provided by the operating 
system, which sits upon the computing hardware.  
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Fig. 1: Layers of a typical Java environment 
 
Obviously, this is a more complex run-time 
architecture than that which is usually associated 
with a programming language like ‘C’. 
Unfortunately, this also detracts from the execution 
performance and predictability of Java. 
 
Within the execution environment of Java, there are 
undesirable activities. Threads have come under 
scrutiny, as their temporal requirements cannot be 
easily expressed and certainly not guaranteed 
(Miyoshi, et al., 1997). More advanced features 
permit compilation during run-time, through the 
availability of just-in-time (JIT) compilers, such as 
those available from Symantec and Inprise. These 
compilers are automatically engaged during run-
time, compiling code on-the-fly. Claiming, this 
provides speed-up of 10-20 times for some 
applications (Horstmann, et al., 1997). However, this 
is undesirable for real-time systems, as it is difficult 
to predict when a JIT compilation will occur. There 
is also another technique, called ahead-of-time 
(AOT) compilation, which permits compilation to 
native code prior to run-time.  However, it has been 
found that for some AOT compilers only the 
methods of an application are compiled, and the 
application is still run via the services of a JVM.  
 
Interestingly, there is no reason why Java cannot be 
executed on conforming hardware directly, which 
simplifies the run-time architecture and improves the 
ability to perform real-time analysis. J. Kreuzinger et 
al, have made progress in this direction, with the 
development of the Komodo microcontroller, which 
executes a variant of standard Java natively 
(Kreuzinger, et al., 1999). Other examples of Java 
hardware come from aJile Systems and Systronix 
who have developed single board Java computers 
based on the Rockwell Collins JEM2 core. 
 
Industry speculates that Java is desirable for real-
time systems and as a result of the shortcomings, a 
number of consortia have been assembled in an 
attempt to formulate specifications of a real-time 
Java. Encompassing many blue-chip companies in 
their membership, the two most significant groups 
are the Real-time for Java Experts Group (RTJEG) 
(www.rtj.com), and the other is the J-Consortium 
(www.j-consortium.com) (Bollela, et al., 2000; The J 
Consortium, 1999; Baxter, et al., 2000). 
Furthermore, there are a great variety of claimed 
real-time Java environments that have been released 
by a plethora of companies, including: Sun 

Microsystems, Inc. (java.sun.com); Newmonics, Inc. 
(www.newmonics.com); Insignia Solutions 
(www.insignia.com); Esmertec, Inc. 
(www.esmertec.com); aJile Systems 
(www.ajile.com) and Systronix, Inc 
(www.systronix.com). 
                

3. THE INVESTIGATION 

Considering, all the previous criticisms, it can be 
suggested that Java does not have a place in real-time 
systems. However, this paper makes a practical 
investigation through the simple benchmarking of a 
number of Java environments running a challenging 
process control case-study application. Initially, the 
authors propose several candidate software 
architectures suitable for representing control 
algorithms. The case-study is subsequently coded 
according to these architectures, and evaluated for 
execution cycle-time. The application is cyclic, 
where data is pumped into the inputs of the system, 
which percolates through the various software 
objects. The completion of a cycle occurs when all 
the data has been processed and data arrives at the 
output. It is this cycle-time that is of interest to this 
investigation. The implementation was prepared for 
timing analysis by developing a timing harness that 
would iterate the implementation many times. 

4. CASE-STUDY APPLICATION 

The case-study has been drawn from the process 
control industries, and is illustrated in Fig. 2. It is a 
component of a controller for an extruder process, 
which is known to be a challenging control problem. 
The application was specified and simulated using 
the Mathworks Simulink environment (Mathworks, 
2000), at the Control Systems Centre (CSC) at 
UMIST, Manchester. A portion of the complete 
application was then hand coded in Java using the 
proposed software architectures. This controller is 
cyclic, and has a time period requirement of 34mS. 
Failure for the application to be computed within this 
time will affect the dynamics of the system, which is 
considered unacceptable. The first objective of this 
investigation is to assess whether the algorithm can 
be computed within this stringent time constraint. 
 
 
 

 
 
Fig. 2 Simulink view of case-study application  
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5. SOFTWARE ARCHITECTURES 
 
The researchers propose a number of generic 
software architectures that could be used to represent 
a typical controller; they are based on the results of a 
previous benchmarking experiment (Baxter, et al., 
2000). These were: 
 
a) An elegant and multi-threaded architecture, 

based on the communicating sequential 
processes (CSP) parallel processing paradigm 
(Hoare, 1985; Kreuzinger et al., 1999). 

b) A simple serialised architecture, proposed for 
efficient run-time performance. 

c) A multithreaded architecture with increased 
granularity and fewer threads, to overcome the 
performance inefficiencies of (a) and the lack of 
object-orientation in (b). 

d) A multi-threaded architecture, that exploits 
method call communications, based on (a) but 
with potential execution performance benefits. 

 
5.1. Multi-Threaded Architecture 
 
This novel, yet elegant, software architecture is 
based on CSP, proposed by Hoare (Hoare, 1985). 
Consider the case-study in Fig. 2; it illustrates the 
Simulink block diagram for an advanced PID 
controller. It was noted that the controller data-flow 
diagram is constructed from transfer-function blocks 
and interconnecting signals. As can be seen, the 
diagram is essentially a data-flow diagram. This 
structure can be elegantly represented by the CSP 
paradigm, which is rooted in mathematical 
formalism and is analysable.   
 
To understand the transition to code consider Fig. 3, 
it illustrates a simple controller in Simulink. The 
resulting multithreaded architecture can be seen in 
Fig. 4, which is structurally similar. Here, each block 
of the Simulink diagram is translated into a Java 
thread. The corresponding interconnecting signals in 
Simulink are constructed with streams. 
  
An elegance of this multi-threaded approach is that it 
takes advantage of the regularity of control system 
diagrams. Control algorithms are typically 
constructed from a small library of block types, for 
example: transfer functions, adders and multipliers. 
A library of Java classes, each representing a block 
type has been built. From here, the implementation 
of a controller only requires code to instantiate the 
relevant blocks and signals with an appropriate 
harness that ‘wires’ the components together, see 
Listings 1 for the generic pseudocode. Initially, the 
constructor method instantiates all the signals and 
blocks, and connects the streams. The blocks are 
subsequently named, for debugging purposes. 
Finally, the threads are set to run. The run method 
forms the body of the code, and is an endless loop 
that wraps around the system input and output. 
 

 
 
Fig. 3 An example controller in Simulink 
 
 

 
 
Fig. 4 Example multi-threaded software architecture 
 
 
class CONTROLLER extends Thread 
{ 
  private DECLARE SYSTEM INPUTS 
  private DECLARE SYSTEM OUTPUTS 
 
  public CONTROLLER ( I/O PARAMETERS ) 
  { 
 
    INSTANTIATE INPUT SIGNALS 
    INSTANTIATE OUTPUT SIGNALS 
 
    Line DECLARE SIGNALS = new Line(); 
     
    TEMPLATE BLOCK = new TEMPLATE 
    ( 
      BLOCK INSTANCE PARAMETER VALUES, 
      BLOCK_INPUTS, 
      BLOCK_OUTPUTS                                         
    ); 
 
    SET HIERARCHIAL NAMES OF ALL BLOCKS 
    START ALL CREATED THREADS  
  } 
 
  public void run() 
  { 
    while( TRUE ) 
    { 
      READ SYSTEM INPUT 
      SEND INPUTS TO CONTROLLER  
      READ OUTPUTS FROM CONTROLLER 
      WRITE SYSTEM OUTPUT  
    } 
  } 
} 
 
Listings 1: Multi-threaded harness pseudocode 
 
An advantage of this simple architecture is that the 
precedence of blocks in the data-flow diagram does 
not need to be considered in the implementation. 
Threads will only be run if they have input data, if 
they don’t, they will block and are not scheduled. In 
addition, to minimise the effects of garbage 



     

collection the application has a static memory 
requirement. After initialisation of the application at 
run-time, no further memory space is requested.  
 
class BLOCKNAME extends Thread 
{ 
  private double I/O VARIABLE DECLARATIONS 
  private double OTHER VARIABLE DECLARATIONS 
  private PIPE VARIABLE DECLARATIONS 
 
  public void BLOCKNAME( PARAMETERS ) 
  { 
    INITIALISE I/O VARIABLE DECLARATIONS 
    INITIALISE PIPE VARIABLE DECLARATIONS 
  } 
 
  public run() 
  { 
    while( TRUE ) 
    { 
      READ INPUTS 
      EXECUTE ALGORITHM 
      WRITE OUTPUTS 
    } 
  } 
} 

 
Listings 2: Generic class pseudocode 
 
The classes within the library are all constructed 
around a common structure, see Listings 2. The class 
contains a constructor and a run method. The 
constructor initialises parameters for this instance of 
the block type, and is also responsible for attaching 
the ends of the streams that will be used for inter-
thread communications. The main body of the code 
appears in the run method, this is the code that is 
executed once the thread has been prepared for 
execution. Here, a non-terminating loop wraps 
around the mathematical equations representing the 
block, with appropriate input and output operations. 
There are a number of other software architectures 
that could be used here, but this was initially chosen 
for simplicity. 
 
It is important to note that this simple relationship 
between the Simulink diagram and Java code lends 
itself very well to automatic code-generation. A 
code-generator could draw on this class library of 
controller components, and by building the 
communication harness based on the generic 
pseudocode described, a complete controller is easily 
produced. The case-study here was handcoded, 
which when considering more complex examples 
was not considered a scalable approach. For 
automatic code-generation, this increased complexity 
is not expected to be an issue. 
  
5.2. Serialised Architecture 
 
Multi-threaded applications incur run-time overheads 
due to scheduling and context switching overheads 
(Baxter, et al., 2000). Although, here, the virtual 
machine will be kept busy whilst there are runnable 
tasks. To investigate the burden of multi-threading, 
an alternative software architecture was proposed, 
based on a serialised structure. Consider Listings 3, it 
represents the pseudocode for a generic serialised 
architecture. Here, a single thread represents the 
complete controller. The blocks are implemented as 

in-lined code and the signals as local variables. An 
endless loop, wraps around the controller maths, 
firstly external inputs are read. Subsequently, the 
individual blocks are computed with the outputs 
being written at the end. The result is an architecture 
that does not introduce the threading overheads 
previously described. However, this architecture does 
require analysis of block precedence, the developer 
must order the code to match the diagram. In 
addition, it does not take advantage of the power of 
object orientation, as only one object is in the system, 
the complete controller. As with the multi-threaded 
architecture, the application has a static memory 
requirement. 
 
public class CONTROLLER_NAME 
{ 
  public void CONTROLLER_NAME() 
  { 
    double COMM VARIABLE DECLARATIONS 
    double BLOCK PARAM VARIABLE DECLARATIONS 
    double SYSTEM VARIABLE DECLARATIONS 
 
    while( TRUE ) 
    { 
      READ INPUTS 
      PROCESS BLOCK 1 
      PROCESS BLOCK 2 
         . . . 
         . . .  
      PROCESS BLOCK N 
      WRITE OUTPUTS 
    } 
  } 
} 

 
Listings 3: Serialised architecture pseudocode 
 
5.3. Large-grained Multi-threaded Architecture 
 
The multi-threaded approach can be criticised for the 
overheads that are introduced due to thread 
management, such as, context switching and 
scheduling. In addition, the code representing the 
simulink blocks does not have a high computational 
demand, but requires significant communication 
across pipes. This indicates fine-grained tasks, which 
are known to be inefficient. However, the serialised 
approach eliminated these issues, but does not exploit 
object-orientation and results in unmanageable code 
size for real-world controllers. 
 
These arguments led the authors to propose a multi-
threaded architecture with increased task granularity. 
This is performed by creating small groups of 
neighbouring simulink blocks to form larger-grained 
blocks, essentially a process of serialisation. 
Subsequently, these are implemented as threads in 
accordance with the multi-thread architecture. 
 
5.4. Multi-threaded architecture with method call 
communications 
 
Existing benchmarks (Baxter et al, 2000) indicate 
that a single communication over a pipe incurs a 
fixed overheads for messages sizes upto 512bytes, 
for the virtual machines investigated. This 
communication overhead becomes comparatively 
significant for the small message sizes used here. 
This led the authors to consider an architecture that 



     

uses method calls for communications, believed to 
have comparative performance benefits for small 
message sizes. Here, the multi-threaded architecture 
is retained, but streams are substituted for method 
calls.  
 

6. EXPERIMENTAL ENVIRONMENT 
 
The Borland JBuilder3 integrated development 
environment was used for the initial application 
development, and then compiled to byte-codes by the 
Sun Microsystems Java compiler from version 1.3 of 
the standard development kit. At this stage, the byte-
code application can be run on the chosen JVMs. 
Two different JVMs are used, the standard Sun JVM 
and another commercial offering, which will be 
designated as Brand X. However, the Brand X 
toolset suite also has provisions for compiling byte-
codes into native code. This requires the use of the 
accompanying tool and a 'C' compiler, from which a 
standalone executable is built. Finally, the GNU ‘gcj’ 
is also used, that compiles Java source code directly 
to native code (gcc.gnu.org). The underlying 
operating systems are Windows 98 and Redhat Linux 
7.x. The list below summarises the experimental 
configurations, which were used in the investigation: 
 
• Sun JVM on Windows 98 

• Sun JVM on Linux 

• Brand X JVM on Linux 

• Brand X compiled native executable on Linux 

• GNU ‘gcj’ compiled native executable on Linux 

 
The hardware used for all these investigations was an 
Intel Pentium II 400MHz on an Intel SE440BX-2 
motherboard with 128MByte of system memory.  
 

7. RESULTS 
 
Table 1 outlines the cycle-time results for a selection 
of the specified configurations. For the application in 
hand, the Java multi-threaded byte-code 
implementation upon Windows 98 is not performing 
well, when considering the requirements of the 
algorithm. In fact, it takes nearly 200 times longer 
than the required 34mS cycle-time. However, 
transporting the application to the Linux OS provides 
a modest reduction in execution time. Although the 
Brand X JVM is claimed to provide improved 
execution and context switching performance over 
the Sun implementation, only a small cycle-time 
advancement was shown. Subsequently, the 
application was compiled into native-code utilising 
the Brand X tools. The authors had a confident 
expectation that the requirements would be satisfied 
using this approach; there was a huge disappointment 
when only a modest improvement was demonstrated. 
 
However, the serialised architecture resulted in 
massive performance benefits, when compared to the 
multi-threaded architecture. Although the timing 
requirement was not met, with this simple software 
architecture the result is very close. The 

improvements are in excess of 100 fold, when 
compared to the multi-threaded variant, and are 
clearly down to the reduction of scheduling 
overheads and inter-thread communications. 
 
Table 1: Application cycle-time results 
 

Software 
Architecture 

App' Code 
Format 

Virtual 
Machine OS 

Cycle-
time 
(S) 

Multi-threaded Byte-code Sun Win98 6.59 

Multi-threaded Byte-code Sun Linux 5.11 

Multi-threaded Byte-code Brand X Linux 5.01 

Multi-threaded Native-code Brand X Linux 4.95 

Multi-threaded 
time-slice 

tuned 
Native-code Brand X Linux 1.61 

Serialised Byte-code Sun Win98 0.045 

Serialised Byte-code Brand X Linux 0.043 

Serialised Native-code GNU Linux 0.040 

 
 
Additionally, the authors also tried tuning the 
scheduler time-slice for the Brand X native-code 
variant, performed on the command-line. 
Improvements were in the order of 3 fold. The 
default was 25mS, and the best setting tried was 
8mS. 
 
Finally, the GNU compiler was applied to the 
serialised version. Again, a small improvement was 
demonstrated over the other serialised 
implementations, but still short of the temporal 
demands. 

8. CONCLUSION 

Despite the plethora of configurations trialed, none of 
implementations met the 34mS cycle-time 
requirement. But before concluding that Java has no 
place in real-time process control systems, reconsider 
the table of results. Obviously, the choice of JVM 
and OS has not had significant impact. Neither has 
the compilation to native-code, which surprised the 
authors, and questions were raised on why there was 
little improvement. On further investigation it was 
found that full AOT was not occurring, only the 
compilation of methods, and the application was still 
being run upon the services of the JVM. Here, the 
term AOT is considered misleading. 
 
The most significant improvement was a result of the 
software architecture. It was expected that the multi-
threaded architecture would incur run-time overheads 
due to scheduling and context switching. However, 
the results of the serialised code imply that these 
overheads are massive, when compared to the time 
spent executing the control algorithm itself. Tuning 



     

the scheduler time-slice also released some benefits. 
This reduction was again surprising; possibly 
indicating the threads may not be yielding to other 
runnable threads when blocked on communications. 
However, this must be confirmed through further 
consultation, experimentation and extended to the 
other configurations. 
 
Clearly, the run-time architecture of the Java 
platform is far more complex than running compiled 
‘C’ directly on a microprocessor. This paper has 
proposed a number of software architectures and 
performed a pragmatic trial, with unexpected results. 
In light of these, it is not obvious what constitutes a 
good software architecture without a practical trial, 
and efficient use of the multi-threading features of 
Java is challenging, despite an elegant software 
representation of the controller.  
 

9. FUTURE WORK 
 
Clearly, the interactions of software components and 
run-time mechanisms are complex within a Java 
environment. The software architectures investigated 
in this paper were partially proposed on the basis of 
some simple benchmarking of execution and 
communication performance benchmarks. There may 
be merit in extending these focused benchmarks, to 
better characterise the alternative platforms. With 
this information the architectures could be revised 
and further execution performance improvements 
may be released. In addition, there are two further 
architectures that will be trialed, which address some 
of the shortcomings of the multi-threaded and 
serialised approaches. 
 
The investigation has focused on one case-study 
only. It is considered a good representation of a 
challenging control algorithm, but has limited 
investigative scope. This will be furthered by 
identifying other general algorithms, in order to 
demonstrate the approaches outlined in this paper. 
 
As described, full AOT compilation did not occur 
with the Brand X tools. Others are available, such as 
the GNU Java compiler and there maybe merit in 
trialing these also. Full compilation is expected to 
release massive improvements, but this must be 
confirmed. 
 
Obviously, the run-time environments in this study 
are not hard real-time. The virtual machines make 
use of some of the underlying services of the 
operating system, such as the scheduler. However, 
there maybe potential rewards through the 
exploitation of the awarding winning Wind River 
Systems' VxWorks real-time operating system, in 
conjunction with a compatible virtual machine, such 
as a recent Sun Microsystems release. 
 
For some time, Java processing in hardware has been 
considered an attractive proposition. Recent 
developments from aJile Systems are exciting, and 
there may be some merit in investigating the 
suitability for real-time systems. Initially, applying 

the previous benchmarks and case-study application 
may demonstrate that a hardware approach is more 
viable. Moreover, for hard real-time systems this 
approach maybe far simpler to analyse. For example, 
the determination of worst-case execution times 
(WCETs) for software components is not straight 
forward in the usual multi-tier Java architecture. This 
would be greatly simplified when using Java 
hardware, as the core is micro-coded and byte-codes 
would be expected to have a fixed worst-case 
execution time. For example, traditional instruction 
counting techniques could be applied to determine 
WCETs. 
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