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Abstract: Genetic algorithm-based neural network modeling is studied. A MLP model 
for predicting NOx emission in a coal-fired power generation plant is trained using 
genetic algorithms. In order to avoid over-training, two data sets are involved, i.e. one 
data set is used for searching the weights and bias, the other set is used for validation. 
The fitness function for the GA based training is the combination of the training error 
and validation error. The GA-based MLP model has been tested over different periods 
of operation, showing the merits of this modeling technique. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
 

The strict requirement for NOx-emission from 
combustion systems, particularly power generation 
boilers, has motivated numerous researchers and 
produced a wide variety of methods. With respect to 
NOx emission reduction in power generation boilers, 
existing and developing technologies may be grouped 
into two main areas, namely combustion modification 
and post combustion techniques. Advanced control 
systems (the area covered by this paper), or indeed 
advisory systems, claiming to reduce NOx emission 
while maintaining the combustion efficiency are 
essentially combustion modification systems.  
 
It is estimated that an advanced control system can 
reduce NOx emission by between 15% and 25% 
(ETSU, 1997). However, an important step in 
developing any advanced control or advisory system 
is the ability to produce a simple but realistic model, 
which captures the relationship between the plants 
operational inputs and the NOx output. This paper 

studies NOx emission modeling using artificial 
neural networks. 
 

NOx formation is a highly complex and nonlinear 
process. Existing knowledge relating to the 
combustion process invariably results in large sets of 
partially differential equations (PDEs), which in turn 
produces CFD (computing fluid dynamics) models of 
one- two- or three- dimensions. Although such 
models are useful for plant design they are too 
complex for control purpose. Moreover, the NOx 
formation mechanisms in coal-fired power generation 
plants are still under investigation, and intermediate 
variables such as the distributions of temperature, 
nitrogen and oxygen within the furnace are not 
directly measurable; making the development of 
simplified lumped parameter models difficult.  
 

Linear and nonlinear models based on plant data 
have been developed using system identification 
techniques (Li and Thompson, 2001), however, how 
to generalize the prediction performance of these 
models is still a problem. Essentially, in power 
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generation plants various operational conditions can 
affect the overall NOx emission level and this is not 
the same in all plant. Moreover, even in the same 
plant operating continuously there will be some 
changes in the data due to daily operational 
variations and seasonal electrical load requirements 
(Li and Thompson, 2000; Li and Thompson, 2001).   
 

As universal approximators, Artificial Neural 
Networks (ANN) such as the Multi-Layer Perceptron 
network (MLP) and Radial Basis Function Neural 
Network (RBF) have found wide applications in non-
linear system modeling and control, including the 
estimation of NOx emissions in power generation 
plants (Ferretti and Piroddi, 2001). In neural network 
modeling, there exist two major issues, i.e. training 
and configuration. However the underlying principle 
for these two issues is to develop a neural network 
model with less complexity and better generalization 
capacity (Li and Thompson, 2000). Most MLP 
training algorithms are recursive learning algorithms 
based on Newton-type gradient-descent techniques. 
Most recent advances in training have used second-
order optimization techniques, and typically involve 
the calculation of at least an approximate Hessian 
Matrix associated with the function to be optimized. 
Some popular update algorithms are the LM 
(Levenberg-Marquart) method, the Broyden-Fletcher-
Golfarb-Shanno (BFGS) algorithm, the scaled 
conjugate gradient algorithm, etc. In general, these 
analytic training algorithms can get stuck at local 
minima, particularly when the training data is large.  
 

In this paper, a MLP model is built for the prediction 
of NOx emission in a coal-fired power generation 
plant and uses a genetic algorithm to train the model 
rather than a first-order or second order optimization 
technique. In order to avoid over-training, two data 
sets are involved, i.e. one data set is used for 
searching the weights and bias, the other set is used 
for validation. The fitness function for GA based 
training is the combination of the training error and 
validation error. In order to control the complexity of 
the MLP model, a final prediction error type criterion 
is used as the ANN selection criterion. The GA-based 
MLP model is then tested over different periods of 
plant operation.  
 
 

2. MLP TRAINING BY GENETIC ALGORITHM 
 

The Genetic Algorithm (GA) was first proposed by 
Holland in 1975 and it now has become well 
recognized as a powerful optimization scheme 
(Glodberg, 1989). This is due to its ability to solve 
multi-objective, non-differentiable and even NP 
problems. The main concept is the chromosome and 
its associated operations, namely: selection, 
crossover, mutation and replacement. The algorithm 
starts with a set of solutions (represented by 
chromosomes) called a population. Solutions from 

one population are taken and used to form a new 
population. It is hoped that the new population will 
be better than the old one. Solutions that are selected 
to form new solutions (offspring) are selected 
according to their fitness and the more suitable they 
are the more chances they have to reproduce. This 
relatively simple process is repeated until some 
condition (for example number of populations or 
improvement of the best solution) is satisfied. 
Although this is not a mathematically guided 
optimization scheme, this technique can solve 
complex systems that other techniques might not 
have the ability to accomplish (Peng, et al, 2001). 
The basic GA routine is summarized as follows: 
 
Algorithm 1 Basic GA Routine 
 
Step 1 Start: Generate a random population of µ 
chromosomes (suitable solutions for the problem). 
The value in each bit of a chromosome is selected 
randomly within its predefined range of values.  
Step 2 Fitness: Evaluate the fitness f(x) of each 
chromosome x in the population.  
Step 3 New populations: Create a new population by 
repeating the following until a new population is 
found  
• Selection. Select two parent chromosomes from a 

population according to their fitness (the better 
their fitness the higher the probability of 
selection)  

• Crossover. With a cross over probability form a 
new offspring. Without crossover the offspring 
would be an exact copy of the parents.  

• Mutation. With a mutation probability mutate 
new offspring at each locus (position in 
chromosome). The mutation probability is in 
general very low, within the range of (0.0, 0.1]; 

• Accepting. Place new offspring in a new 
population  

Step 4 Replace: Use new generated population for a 
further run of algorithm  
Step 5 Test: If the end condition is satisfied, stop, and 
return the best solution in current population  
Step 6 Loop: Go to step 2  
 

Applications of GA for artificial neural networks can 
be classified into two categories (Blanco, et al 2001). 
One is to use GA as a means to learn artificial neural 
network connection weights that are coded, as binary 
or real numbers, in a genetic algorithm string 
(chromosome). The other is to use the genetic 
algorithm to evolve and select the artificial neural 
network architecture, together or independently from 
the evolution of weights. In this paper, GA is used to 
train the network weights, however, the complexity 
of the network is controlled by the final prediction 
error type criterion. Since generalization capacity is 
the main purpose of the system modeling, two sets of 
data are used in the GA based training process, one is 
used for training the other is used for validation. GA 



based training is required to find the optimal weights 
and bias minimizing the fitness function, that is the 
combination of the training error and validation 
error. 
 

 
3. PLANT DESCRIPTION AND GA BASED MLP 

MODELING OF NOX EMISSION 
 
 
3.1 General description of the power plant and 
identification of operational variables for modeling 
 
In this paper power station NOx emission is studied 
in a dual fired plant. The power plant’s drum boiler 
produces full load 300 MWe with oil firing or 200 
MWe with coal firing. The boiler was designed to 
supply its turbine with steam at a temperature of 
540°C and up to a pressure of 162 bars. There are 
four burner boxes, one burner box on each corner. 
Low NOx burners are fitted which will supply the 
furnace with oil or pf coal. All of the sections in each 
burner box tilt in unison through ±25°, relative to the 
horizontal. This is achieved by means of a burner tilt 
mechanism.  
 

Coal, the major source of fuel and the one 
considered, is taken from the bottom of a coalbunker, 
pulverized and then entrained in a hot primary 
airflow. The coal delivery system is approximately 
synchronized with the furnace-burning rate. Each 
burner box houses a separated over fire air (SOFA) 
box, which admit fuel and secondary air streams into 
the furnace. These streams are directed at tangents to 
imaginary firing circles in the center of the furnace. 
The tangential firing creates turbulence in the 
combustion area that ensures the thorough mixing of 
fuel and air streams necessary for complete 
combustion. Low momentum burners are employed 
to achieve a longer flame path, leading to reduced 
flame temperatures. The nozzles in the burner box 
tilt in unison in the vertical plane to control the 
position of the fireball, and thus the temperatures in 
the superheat and reheat regions of the boiler.  
 

The major part of NOx emission in power generation 
plant has been found to be NO. According to De 
Soete (1975), there are three main sources of NO in 
combustion, namely thermal NO, Prompt NO and 
Fuel NO. Thermal NO results from the reaction of 
atmospheric nitrogen and oxygen at high 
temperature, prompt NO is formed by the reaction of 
nitrogen with hydrogen derived radicals in the fuel-
rich zone of combustion, while fuel NO results when 
nitrogen compounds present in the fuel are released 
and react with oxygen. In coal-fired power plant, fuel 
NO is the major contribution to NOx emission, and 
some of the fuel NO can be released from the 
devolitisation of the fuel while some from the 
oxidation of the char. Therefore, according to the 
NOx formation mechanism, the following operational 

variables will contribution to the overall NOx 
emission. 
(1). The overall mass flow of fuel, denoted as fm  

with unit   (Kg/s). 
(2). The overall mass flow of air, denoted as am  

(Kg/s). 
(3). Specifically, mass flow of primary air and mass 
flow of secondary air, denoted as pam , sam (Kg/s). 

(4). The burner tilt position, denoted as θ (degree). 
 

Considering that pam , sam , am have only two 

independent variables, there are actually four 
independent manipulated variables, defined as  
 

)t()t(u   ),t(m)t(u
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In the power station, emission are measured every 
minute. After analyzing the power plant data, two 
sets of data 1Ω and 2Ω  with 1100 points and 1200 

points respectively are used for modeling. Each point 
includes the values for the 4 manipulated variables 
and NOx emission measurement for every minute. 
The ranges of values for data set 1 ( 1Ω ) are as 

follows: 
 

NOx emission (unit: ppm):  
452.5] ,9.252[NOx ∈  

Mass flow of fuel  (unit: Kg/s):  
]37.28  ,43.11[m f ∈ ; 

mass flow of primary air (unit: Kg/s):  
]56.21  ,69.24[mpa ∈ ; 

mass flow of secondary air (unit: Kg/s):   
]196.81 ,25.144[msa ∈  

burner tilt position (unit: degree):  
]58.87  ,6.48[∈θ  

The ranges of values for data set 2 ( 2Ω ) are: 

431.1] ,254.1[NOx ∈  

]20.32  ,9.05[m f ∈ ; 

]51.12  ,31.99[mpa ∈ ; 

]182.9 ,143.27[msa ∈  
]72.11  ,42.35[∈θ  

 

It can be found that the two data sets have different 
ranges of data. Considering that these different 
variables have typical values that differ significantly, 
all values are pre-processed by applying a linear 
transformation. To do this, we treat each of the input 
variables independently, and for each variable iu we 

calculate its mean iu  and variance iσ with respect to 

the training set. We can define a set of re-scaled 
variables given by 
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The output is also treated in the same way. 
 
 

3.2 GA based MLP training and architecture 
selection 
 

For nonlinear dynamic system modeling using neural 
networks, two general issues stand out. One is to 
choose the network architecture, and the other is to 
choose the learning algorithm. It has been proved 
that neural networks may approximate a wide 
selection of nonlinear systems to arbitrary closeness 
given a single hidden layer with a sufficient number 
of nodes. However, 1) a neural network with any 
number of hidden nodes will not necessarily nest the 
true structure of the real system; 2) the samples used 
for training is limited, and unlikely cover all 
operation conditions. Therefore, the final model will 
inevitably produce bias solutions in future 
applications.  
 

Consider a MISO system that could be represented in 
a NARX form: 

 

S1: )t()u,...,u,y(f)t(y mdt
m1dt

1
1t ξ+= −−−  (3) 

where t is the time index, y(t), u1(t),…,um(t) are the 
output and inputs sequences respectively, and )t(ξ is 

a sequence of independence random variables with 
zero mean and variances λ . )(f •  is some non-

linear function and d1, …,dm are time delays. 
 

m1,2,...,k 

)]ndt(u),...,dt(u[u

 )],nt(y),...,1t(y[y

ukkkkkkdt
k

y
1t

=

−−−=

−−=

−

−

   (4) 

 

Suppose that the ANN model could be represented 
as: 

S2: )t();u,...,u,y(ANN)t(ŷ mdt
m1dt

1
1t εω += −−−   

(5)  
where t is the time index, ω is the modifiable vector 
parameter, )t(ŷ , u1(t),…,um(t) are the output 

prediction and input sequences respectively, )t(ε the 

modeling error. );(ANN ω• is some non-linear 

function determined by the corresponding neural 
network, d1, …,dm are time delays and  

 

)t(ŷ)t(y)t( −=ε                        (6) 
 

Two sets of data are used in training denoted as 

1Ω and 2Ω  respectively, and it is supposed that 

1Ω has N1 samples and 2Ω has N2 samples.  
 

A sum-squared error function is defined as 
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where Ni , i=1,2 is the number of samples in 1Ω and 

2Ω , ω is the adjustable vectors of all weights. 

 
It is supposed that, the sum-squared-error functions 
for the two sets of data 1Ω and 2Ω  are denoted as 

1)(E Ωω and 2)(E Ωω respectively, the adjustable 

vector ω  which is searched within the error space 

1)(E Ωω  is denoted as 1Ωω , and the adjustable 

vector ω  based on the calculation of 2)(E Ωω is 

denoted as 2Ωω . Then, the training of ANN based 

on two set of data is described as: 
 
Problem formulation 1: To find the optimal 

adjustable vector ∗ω of ANN when searching 

1Ωω within the error space of 1)(E Ωω such that 

2)(E Ωω is minimized.  

 

The question could be formulated as: 

2
1

)(Emin Ω
Ωω

ωω =∗                                (8) 

 
And the performance of the trained ANN based on 

(8) is defined as )(SSE ∗ω : 

21 )(E)(E)(SSE ΩΩ ωωω ∗∗∗ +=     (9) 

 

In the above, 1Ω is in fact used for searching the 

optimal adjustable vectors, while 2Ω is used for 

validation.  
 

It is well known that as the training goes on, the 
generalization error can start to increase at certain 
point instead of decreasing. Therefore, the strategy 
taken in this study is to use one data set, i.e. 1Ω , to 

search for the optimal adjustable vectors, while 
another data set, i.e. 2Ω is used for validation. The 

GA based training process is to find an optimal point 
in the search space that satisfies (8). Since there may 
be many local minima in the error space a GA is an 
ideal optimal tool to search the solution satisfying 
(8). 
 

In this paper, MLP network with one hidden layer is 
used to model the NOx emission. Let ui, i=1,2,…,p 
be the inputs, yi, i=1,2,…,q be the output nodes, ei, 
i=1,2,…,n be the hidden nodes, then, we have: 
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and  

)bu(e eeu += ωφ    (11) 
 



where φ  is the activation function, eu
ijω are 

adjustable weights, e
ib  are bias, eb u, ,e are vectors, 

euω  is a matrix of weights. 
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and  

)be(y yye += ω     (13) 

where, ye
ikω are adjustable weights, y

ib are bias, 

yb u, ,y are vectors, yeω  is a matrix of weights.  
 

In this study, GA is used to search the weights and 
bias of the activation functions for the hidden nodes 
in the hidden layer as well as for the output nodes. 
The chromosome representation, each of which 
corresponds to a candidate ANN model, is proposed 
as follows: 

 

W1 B1 …… Wn Bn 

 
where Wi, Bi , i=1,2,…,n+q are the weight and bias 
sections for the hidden nodes and output nodes; n is 
the number of hidden nodes, q is the number of 
output nodes. Wi i=1,2,…,n are further represented as 
follows: 
 

wi1 wi2 …… wip 
 

where wij, j=1,2,…,p are weights for ith node. 
 

In the four GA operations in algorithm 1, two-point-
crossover is used. For example, two individuals are 
selected randomly from the mating pool based on 
probability, and the crossover produces two off 
springs: two positions are selected at random and the 
bits are exchanged between the points: 
 

Parent 1: 0 1 | 0 1 | 0 0  offspring 1: 01 | 1 0 | 0 0 
Parent 2: 1 0 | 1 0 | 0 1  offspring 2: 1 0 | 0 1 | 0 1 

 

In order to apply algorithm 1 to search for the ANN 
weights and bias, the fitness function is defined as  

 

21111 )(E)(E)(SSE ΩΩΩΩΩ ωωω +=  (14) 

where 1Ωω is the adjustable vector that is searched 

within the error space 1)(E Ωω . 1)(E Ωω and 

2)(E Ωω are sum-squared-error for the two sets of 

data 1Ω and 2Ω . 
 

GA based training is only applied to a fixed neural 
network.  
 

In order to reduce the complexity of the MLP model, 
a final prediction error criterion is applied. From 

system identification, it is known that various criteria 
have been proposed to compare and select an 
appropriate model structure, such as F-test, Akaike’s 
information criterion (AIC), and the final prediction 
error (FPE) criterion (Soderstrom and Stoica, 1989). 
In the following model construction algorithm, a 
FPE-type criterion will be used to select the MLP 
model structure, and it is expressed as follows: 

]
N

m2
1)[(SSEPFElike += ω   (15) 

where )(SSE ω  is the fitness function defined in 

(14), m is the number of weights and biases in the 
MLP network and N is the number of samples.  
 

The MLP network model for NOx emission has the 
following form: 
 

4,3,2,1j,4,3,2,1i),);it(u),it(y(ANN)t(y j ==−−= ω  

(16) 
where y(t) is the NOx emission, uj, j=1,2,3,4 are the 
system manipulated variables as defined in (1). 
 

The NOx emission modeling procedures are 
summarized as follows. 
 

Algorithm 2 GA based MLP modeling 
 

Step 1 Initialization: Select training and validation 
data sets, set stop criterion (the maximal number of 
generations), population size, and other parameters 
for the GA algorithm, i.e. algorithm 1. Set maximal 
number of hidden nodes in the MLP network, set 
initial number of hidden nodes Hn; 
Step  2  Training: Apply algorithm 1 to train the 
MLP network; 
Step 3 Update: Calculate PFElike, and store the 
parameters for the selected MLP model, Hn=Hn+1;  
Step 4  Check: Check whether Hn exceed the 
maximal number. Yes, stop, the MLP model with the 
minimal PFElike is selected; No, go to step 2.   
 
In this study, plant data from power station 
operations are used in training and validation. GA 
evolution in algorithm 1 will stop after 250 
generations, and the size of population pool is 50. 
The crossover probability is chosen to be 0.85, and 
the mutation probability is chosen to be 0.02. The 
number of hidden nodes in the MLP network is 
selected to be between 2 to 30. And based on PFElike, 
the MLP network with 12 hidden nodes is the best 
selection. 
 

The MLP model is tested over different plant 
operation periods, instead of using past measurement 
as the input in the MLP model, the past estimated 
output (plant data of NOx emissions) is used, and the 
MLP model for long-term prediction therefore takes 
the following form: 
 

));it(u),it(ŷ(ANN)t(y j ω−−=   (17) 



where y(t) is the NOx emission, )t(ŷ is the MLP 

model estimation, uj, j=1,2,3,4 are the system inputs. 
Fig. 1, 2 and 3 show the comparison of model 
prediction with plant data of NOx emission. 
Obviously the MLP model is able to give a reasonaly 
good prediction performance over unseen data, 
however there do exist DC excursions in some 
periods (see Fig. 3) which means that the 
nonlinearity of the process is not fully captured by the 
MLP model. 

 
 

4. CONCLUSION 
 

A MLP model has been built to predict the NOx 
emission in a coal-fired power generation plant using 
genetic algorithm-based neural network modeling. 
To avoid over-training, two data sets are involved, 
i.e. one data set is used for searching the weights and 
bias, the other set is used for validation. The fitness 
function for GA based training is the combination of 
the training error and validation error.  
 

In order to control the complexity of the MLP model, 
a final prediction error type criterion has been used. 
The GA-based MLP model has been tested to predict 
NOx emission over different periods of operation, 
showing the merits of this modeling technique. 
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Fig. 1 Prediction of MLP model over period 1 

 
 

0 500 1000 1500 2000 2500 3000
-100

-50

0

50

100

150

200

250

300

350

400

Time (minute)

N
O

x 
em

is
si

on
 (

pp
m

)

Model prediction and NOx emission

 .  NOx emission

-.  Model prediction

-.  Error

 
Fig. 2 Prediction of MLP model over period 2 
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Fig. 3 Prediction of MLP model over period 3 


