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Abstract: This paper presents a comparative study of different existing algorithms for
determining stability domains for linear systems with saturating inputs. Algorithms based on
the solution of LMI problems carried out on the basis of three different saturation models,
namely regions of saturation, differential inclusion, and sector modeling, are analyzed and
compared in terms of their ability to provide large stability domains for the closed-loop
system. The main reasons such algorithms incorporate conservativity are highlighted, this
being the main contribution of this paper. Results are illustrated by means of an example.
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1. INTRODUCTION for example, (Henrion and Tarbouriech, 1999; Gomes
da Silva Jr. and Tarbouriech, 1999%ong and Hsu,

Determining asymptotic stability regions for linear 2000; Hu and Lin, 2000) and references therein) and
systems subject to control saturation has been stud-Lur’e type (Pittetet al, 1997; Hindi and Boyd, 1998)
ied by many authors in the last decade. The moti- Lyapunov functions. In order to take into account the
vation for these studies comes from the fact that, in nonlinear behavior of the closed-loop system and to
the presence of control saturation, the global stabil- obtain testable conditions, the saturation term should
ity cannot in general be ensured. Furthermore, whenbe conveniently represented. The conservativity of
it is possible to compute a global stabilizing control each approach is directly related to both the modeling
law (see (Sussmanat al, 1994; Burgat and Tar- method and the structure of the Lyapunov function
bouriech, 1996)), in general it is difficult to simulta- used.
neously guarantee good performance and robustnes
for the closed-loop system. On the other hand, on the
ground of local stabilization, the exact determination
of the basin of attraction is possible only in very
particular cases. Hence it is important to determine
asymptotic stability regions, in order to approximate
the basin of attraction (Khalil, 1992).

The aim of this paper is to present a comparative
analysis of different techniques proposed in the liter-
ature for determining ellipsoidal domains of stability

(quadratic Lyapunov function). The interest for such
domains is mainly motivated by the recent develop-
ments concerning numerical algorithms and software
packages for solving LMIs and convex optimization

The proposed methods for generating stability re- problems. If test conditions can be cast as LMI-based
gions for linear systems with saturating inputs are optimization problems where the optimization criteria

mainly based on the concept of Lyapunov domains, can be related, directly or indirectly, to the size of

i.e., domains obtained from piecewise-linear (Gomesthe domain of stability to be computed (Gomes da
da Silva Jr. and Tarbouriech, 1999 quadratic (see, Silva Jr. and Tarbouriech, 198§ the problem can



be easilysolved. Although severalmethodshave been
proposedn this contet, we cannoticea lack of criti-
calcomparisorbetweerthedifferentapproacheg-ur-
thermore,in generalthe consenrativity of the results
is not corvenientlyanalyzedr elucidatedThis paper
addressethesessuesasit providesacritical analysis
of somemethoddor computingellipsoidalregionsof
asymptoticstability for systemsawith saturatingnputs.

The paperis organizedas follows. After the state-
ment of the problem, the paperis divided in three
sectionghatarerelatedto differenttype of saturation
modeling,namely:regions of saturation differential
inclusionandsectomodeling.In eachsectionthe suf-
ficientconditionsto besatisfiedandthecorresponding
algorithmsfor determiningthe ellipsoidal regions of
stability are presentedinddiscussedThen,an exam-
pleis workedoutin orderto provideanumericalcom-
parisonbetweertheresultsobtainedwith thedifferent
approaches.

Notations:For two vectorsx, y of 0", thenotationx >
y meanghatx — Yy > 0,Vi = 1,...,n. A, denotes
theith row of A. For two symmetricmatrices,A and
B, A > B meansthat A— B is pos. definite. diag(x)
denotesa diagonal matrix obtainedfrom vector x.
In2[1...1/ € 0™ 0n2[0...0 € O™ Iy is them-
orderidentity matrix. int denotegheinterior of a set.

2. PROBLEM STATEMENT

Considerthe continuous-timdinear system

X(t) = AX(t) + Bu(t) )

wherex(t) € O", u(t) e O™, Ae O™ andB € O™M,
Assumesysten(1) is in closed-loopwith thesaturated
linearcontrollaw

u(t) = sa(Kx(t)) 2

wheresd () denoteghe classicalsymmetricaldecen-
tralizedsaturatiorfunctiondefinedasfollows:

sa (V) i) = sign(vy) min{pgy, Vi [}
wherei = 1,...,mandp; representshe control limit

ontheith input. Dueto thesaturatiorterm,theclosed-
loop systemis nonlinear:

X(t) = AX(t) + Bsa(Kx(t)) 3)

Thepolyhedralset

S(K,p) 2 {xeO"; —p<Kx=p}
is the region of linearity of system(3). Inside this
region, the control entriesdo not saturateand the
behaior of the systemis locally describedby the
linearmodelx(t) = (A+ BK)x(t). We assumehatthe
matrix K is suchthatall the eigervaluesof (A+ BK)
are placedin the openleft half complex plane, so
thatin the absencef controlboundsthe closed-loop
systemwould be globally asymptoticallystable

Let P =P > 0 andc > 0 andconsidertheellipsoidal
setE(c) = {xe O"; XPx<c}.

Definition1. The set E(c) is a region of asymptotic
stability of system(3) if: (i) the pointx =0 is a
locally asymptoticallystable equilibrium point; (ii)

it is containedin the the region of attractionof the
equilibriumx = 0.

Definition2. ThesetZ(c) is contractivewith respect
to system(3) if the functionV(x) = X'Px is strictly

decreasin@longthetrajectoriesof (3) in £(c) — {0}.

In particular if E(c) is contractve, thenit is aregion

of asymptoticstability.

In particular the problem of determiningellipsoidal
regions of stability containedin region SK,p) is

a trivial problem. The interestin this paperis in

the study of conditionsthat allow the determination
of stability regions not containedin the region of

linearity and,in consequencehat take into account
thenonlinearcharacteristiof the closed-loopsystem,
aspresentedn the next sections.

3. MODELING BY REGIONSOF SATURATION

Thisrepresentationonsistdn dividing the statespace
in regions called regions of saturtion. Inside each
region of saturationthe system(3) canbe modeledas
an affine systemor, equivalently, asa systemwith an

additive constandisturbanc€Gomesda Silva Jr. and
Tarbouriech,199%) (i.e. the saturatedsystem(3) can
be viewed as an hybrid systemwith piecavise affine

dynamics(JohanssoandRantzey1998)).

Let& € O™ besuchthateachentry &, i = 1,...,m,
takes the values1, 0 or —1 in accordancewith the
saturatiorfunction (2) asfollows:

—1if K(,)X(t) < —p(i)
0 if —pgy < Kipyx(t) < pgy 4)
1 if K(i)X(t) > Py

&i(t) =

There are 3™ differentvectorsg: &; € O™ for j =
0,...,3™— 1. For eachvector §;, the state vector
belonggo aspecificregion calledregionof saturation.
Genericallytheregionof saturatiorassociatetb & is
denotecby

S(Rj,dj) = {xe O"; Rjx=d;} (5)

whered; € O'i is definedfrom the entriesof p and
—p, andR; € 0'i*" is definedfrom therows of K and
—K. We define§p = Oy, sothatthe region associated
with j = 0 corresponds$o S(K, p). In all otherregions
thereis at leastone control input thatis saturatedIf
x(t) € S(R;,d;), definingA; = A+ Bdiag(1m— |§j|)K
andv; = Bdiag(&)p, themotionof thesystem(3) can
bedescribedy

X(t) = AjX(t) +Vj ®)

Theoeml. The function V(x) = XPx is a strictly
decreasindgryapuna functionfor thesaturatedystem
in E£(c) if andonly if the following conditionshold
Vi, j=1,...,3M-1:



(i) X[P(A+BK)+ (A+BK)'P]x <0,
vxe S(K,p)NE(c), x#0

(i) XP(Ajx+Vj)+ (Ajx+Vj)' Px< 0, )
vx e §(R;j,dj) NE(c), x#0
Vi s.t.§(Rj,dj)NintE(c) # 0

The proof of Theorem1 follows directly from (6).
Although it providesa necessarynd sufficient con-
dition for a set £(c) to be contractve, it still lacks
of practicalbenefitbecausehe conditions(7)-(i)-(ii)
are not easily solvable with the available numerical
methodsWe presennext two sufficient conditionsfor
(7)-(i)-(ii) thatarenumericallymoretractable.

3.1 TestConditionl

The conditionbelov correspondso a generalization,
to multi-input systems,of the results proposedin
(FongandHsu,2000).

Propositionl. If there exists nonnayative scalarsy;
andt;,i = 1,...,l; satisfyingthe following condi-
i IORM i

tionsvj, j=1,...,3™"—1,

(i) P(A+BK)+(A+BK)P<0

iy [PA +AP=Y;P Py —05RT/

( ) \/jP70.5TjRj ij+Tjdj
Vjst.YRj,dj)NintE(c) #0

<0 (8)

with Ty =[tj(q) ...Tjq;)], thenthesetZ(c) is aregion
of stability for the saturatedystem(3).

Proof: Relation (8)-(i) implies that relation (7)-(i)
is satisfied. For all regions such that S(Rj,dj) N
XPx—c<0
Rjx—d; <0°
Hence,it follows that a sufficient condition for the
satishction of (7)-(ii) is that for somenonneative
scalarsy; and tj(;),i = 1,...,lj one verifies, for all
X#0,

{x]’ [PA_J- +AP—y;P ijfo.sF(jTj’} {x} -0

1 ViP—05T|R;  yjc+Td; 1

intE(c) # 0 thereexists x satisfying

This conditionsand,in consequencdy)-(ii) aresat-
isfiedif (8)-(i) is satisfied thuscompletingthe proof.
O

The resultof Proposition1 allows to verify whether
a given ellipsoidal set £(c) is contractve or not, in
which casethecondition(8)-(ii) is justanLMI feasi-
bility test.Alternatively, givena contractve set£(c)
onecantry an homotheticexpansionby interactvely
increasingc andtestingcondition (8). The condition
(8) can also be usedto find a contractve set £(c)
for system(3). In this case however, (8)-(ii) becomes
aBMI sinceP andyj, j = 1,---,3™1, will both be
decisionvariablesNote thatwe cansetc = 1 without
lossof generalityin this case.Solving BMIs usually
requiresemploying somerelaxationmethod(Henrion
and Tarbouriech,1999). A possiblerelaxationalgo-
rithm is asfollows.

Algorithm1. :

(1) Chooseyj =V, Vj=1,...,3"-1.

(2) Setc=1. Fixyj, j=1,...,3"—1, obtained
in the previous stepandsearchfor P and T; by
optimizingacriteriononthesizeof £(c) subject
to theLMI conditions(8)-(i)-(ii)

(3) Fix P obtainedin step 2. Maximize ¢ subject
to conditions (8)-(i)-(ii) with y; and T, j =
1,...,3™— 1, asdecisionvariables’ .

(4) Go to step2 to improve the criterion on Z(c)
until a desiredprecisionis achieved.

Note that, (P,yj, T;) obtainedin step2 consistsin a
feasiblesolution for step3 with ¢ = 1. Corversely
(P,c,yj, T;) obtainedn 3 is afeasiblesolutionfor step
2 by settingP = P/c. Hencethe corvergenceof the
algorithmis alwaysensured.

Remarkl. Thecondition(7)-(ii) hasbeenturnedinto

condition(8)-(ii), which canbeverifiedasanLMI test
or, in theworsecaseasaBMI. In thistransformation,
however, someconsenativity hasbeenintroduceddue
to thefollowing facts:

(i) The use of the S-procedure.Indeed, the S-
proceduras only a sufficientconditionin this casebe-
causehereis morethana singleconstraintnvolved.

(ii) TheLMI test(8)-(ii) impliesthat
{x}' [PA_J- +AP—yP ijfo.sF(jTj’} [x} <0
4 ViP—05T|R;  yjc+Td; 4
for all (x,{) # 0, while it would be enoughto check
thecasewherel = 1.

(iii) It is clear that the contractve set £(c) does
not necessarilyintersectall the regions of saturation.
Moreover, only the region that doesintersectthe set
needsto be tested.However, if the setE(c) is being
synthesizedit is not possibleto determine,a priori,

whetherthe searchecellipsoid will intersector not

someof theregionsof saturationIn this casejn Algo-

rithm 1 thetestof (8)-(ii) is performedfor all regions
of saturationHence,it canhapperthatcondition(8)-

(ii) is unnecessarilyerifiedin someregion j.

3.2 TestCondition2

This conditionwasmainly inspiredby theresultspre-
sentedin (Johanssorand Rantzer 1998) for generic
hybrid systems.

Proposition2. If there exists nonngative scalarsy;
andsymmetricmatricesM; € 0'i*!i with nonneyative
entries satisfying the following conditionsVj, j =
1,...,3"—1,

(i) (A+BK)'P+P(A+BK)<0

(i) PAj+A’jP+I?ijRj7yjP ijfI?’ijdj
' \/jP—dejRJ ij+dejdj
VistSR;,dj)NE(c) #0

<0 9)

1 This canbe accomplishedy increasingnteractvely ¢ andtest-
ing (8)-(i)-(ii) asanLMI feasibility problem.



then the set E(c) is a region of stability for the
saturatecsystem(3).

The proof of Proposition2 is carriedout similarly as
in Propositionl. Thesepropositionsbasically differ
in the stratgy the S-proceduras handled.Here the
constraintsare transformedinto quadraticforms be-
fore beingincludedin the LMIs. All remarksandthe
relaxationalgorithmpresentedor Propositionl carry
overto Proposition2.

4. DIFFERENTIAL INCLUSION MODELING

This modelinghasbeensuccessfullyusedfor the de-
terminationof regionsof stability (Gomesda Silva Jr.
and Tarbouriech,199%), (Henrion and Tarbouriech,
1999)aswell asfor thesynthesiof stabilizingcontrol
laws in presencef saturatingnputs(GomesdaSilva
Jr. etal., 1997).

Note that the ith entry of the saturatedcontrol law
definedin (2) canbealsowrittenas:(sa (Kx(t))) ) =

a(x(t)) i Keyx(t) where
o Pa)
The coeficienta(x(t)) canbeviewedasanindica-

tor of the degreeof saturationof the ith entry of the
control vector In fact, the smallerthe a(x(t)) ), the

fartherthe statevectoris from the region of linearity.

DefineD(a(x(t))) 2 diag(a(x(t))). Thus,system(3)
canberewrittenas

X(t) = (A+BD(a(x(t))K)x(t) 11)

It is difficult to performa stability testdirectly from
(11) dueto the presencef a(x(t)). We thusproceed
in deriving atestableconditionfor it.

4.1 Testcondition

Let 0 < ;) < 1 be a lower boundto af(t) and

! A .
definethe vectora = [ay), ..., d(y]". Thevectora is
associatedo the following regionin the statespace:

SK,p%) ={xeO"; —p” = Kx=<p“} (12)

Wherep() BQ Vi=1,.
Considernow aII the possiblem-order vectorssuch
that the ith entry takes the value 1 or a;;. Hence,
thereexistsatotal of 2™ differentvectors By denoting
eachoneof thesevectorsby yj, j = 1,...,2™, define
the following matrices:Dj(a) = D(y;) = diag(y;)
and Aj = A+ BDj(a)K. Note that the matricesA,
are the vertlcesof a corvex polytopeof matrices. hl
x(t) € S(K,p?) it follows that (A+ BD(a(t))K) €
Co{Al,Az,...,Azm}. Hence,if x(t) € S(K,p%), x(t)
canbe determinedrom an appropriatecorvex linear
combinationof matricesAj attimet, thatis:

om
X(t) = ZlM (()AX(1) (13)
j=

with 327 Aj(x(t)) = 1, Aj(x(t)) > 0.

It should be pointed out that model (13) represents
the saturatedsystemonly in S(K,p%). Actually, if
x(t) € S(K,p%), the polytopicmodel(13) canbe used
to determinex(t).

Proposition3. If thereexistsavectora satisfyingthe
following conditionsVj =1,...,2M

(i) P(A+ BD; ()K) + (A+BDj (g )P<0

. G(.
(i) oK >0Vvi=1,. (14)

(iii) 0<0(,)<1 \ﬂ 1,

then the set £(c) is a region of stability for the
saturatedsystem.

See (Gomesda Silva Jr. et al., 1997), (Gomesda
Silva Jr. and Tarbouriech,199%) for a proof. Simi-
larly to Propositionsl and 2, the sufficient condition
statedin Proposition3 allows both to testif a given
‘£(c) is contractve andto determinea contractve set
basedon some geometriccriteria. In the first case,
sinceP andc are given, conditions(14)-(i)-(ii )-(iii )
can be easily testedas an LMI feasibility problem
in a. In the secondcase,P and a appearas deci-
sionvariable$ andcondition(14)-(i) becomea BMI
whereag14)-(ii )-(iii ) areLMIs. A possiblerelaxation
schemen this caseis asfollows (see(GomesdaSilva
Jr. and Tarbouriech,199%) and (Henrion and Tar
bouriech,1999)for moredetails),whosecornvergence
is guaranteedimilarly asin Algorithm 1.

Algorithm?2. :

(1) Choosen.

(2) Setc = 1. Fix a obtainedin the previous step,
andsearchfor P by optimizinga criteriononthe
sizeof £(c) subjectto theLMI constraintgiven
by (14)-(0)-(ii)-(ii)

(3) Fix P obtainedn step2. Minimize p= = subject
to LMI constraintgivenby (14)-(i)-(iii ) with a

asadecisionvariable.

(4) Gotostep2until adesiredprecisionis achieved..

1
)

Remark2. The consenativity of the conditiongiven
by Propositior3is dueto themodelingof thebehavior
of the saturatedsystemby a differentialinclusion.In
fact, (14)-(i) is a necessaryand suficient condition
for the quadratic stability of the polytopic system
X(t) = 3225 Aj(DAX(1), VAj(t) suchthaty 2"y Aj(t) =
1, Aj(t) > 0. Notice, however, that the trajectories
of this systemincludesall trajectoriesf the saturated
system(3), but the corverseis not necessarilyrue.

5. SECTORMODELING
This modeling has beenusedfor the determination

of regionsof stability aswell asfor the computation
of stabilizingandperformingcontrol law in presence

2 We canconsiderc = 1, withoutlossof generality



of saturatinginputs (Pittet et al., 1997), (Hindi and
Boyd, 1998).

Let usfirst definethe nonlinearityys asfollows:

Ws(Kx(t)) = sa(Kx(t)) — QminKx(t) (15)

Fromthis definition,theclosed-loosystem(3) equiv-
alentlyreads:

X(t) = (A4 BQminK)X(t) + Bs(KX(t)) (16)

where Qmin € O™™M is a positive diagonal matrix

chosensuchthat matrix A+ BQuminK is Hurwitz. By

definition, the nonlinearityys(Kx(t)) is decentralized
andsatisfieghesectorcondition(Khalil, 1992),(Pittet

etal., 1997)

lle(KX)'[lle(KX) - (Qmax_ Qmin) KX] <0 a7

Ve S(K,pmn) = {x e 0" ; — pfin < Kx < pmn}, plmn —

(i)
P()
Qnini iy ?

i= 1, N 1] With Qmax— Qmin > 0.

Since (16) involves s, it is difficult to perform a
stability testdirectly from it. In the sequele develop
atestablesufficient conditionfor the stability of (16).

5.1 TestCondition

Let us considerthat Qmay is a given diagonalmatrix
suchthatQmax > Im.

Proposition4. If thereexistadiagonalpositive matrix
Qnmin anda positive scalare satisfying

(A+BQminK)' P+ P(A+BQminK) +€P % <0
B'P+ (Qmax— Qmin)K —2Im
P *
pﬁ) >0, Vi=1,...,m (18)
Qmingi) Kei) =~

0< Qminijy <1, Vi=1,...,m

wherex is obtainedfrom the symmetryof the matri-
ces,thenthe set £(c) is a region of stability for the
saturatecsystem(3).

A proof can be found in (Pittet et al., 1997). The
underliningidea in Proposition4 is the application
of the circle criterion (Khalil, 1992)to system(16),
which alsois the mainsourceof consenrativity in this
methodIndeed(18) ensureshatZ(c) is acontractve
setfor the systems

X(t) = (A+BQminK)X(t) + BY(t,Kx(t))  (19)
where | is ary nonlinearity satisfying the sector
condition Y(t, Kx)'[W(t,KX) — (Qmax— Qmin)KX] <

0, Vx € S(K,p®min), vt > 0.1t is clearthatthe classof

nonlinearitiesp includesys. However, it alsoincludes
mary othernonlinearitiesvhich arenotrelatedto the
saturatedsystem(16).

Comparedo Proposition3, the stability testin Propo-
sition4 is donevia oneinequalitydescribedn (18)-(i)
insteadof 2™ inequalitiesdescribedn (14)-(i). This
meandesscomputationaburden.

As opposedo all theothertestconditions(18) cannot
be normalizedin c. As aresult,any choiceof c leads
to differentresults whichmaybeoverly consenrative.

A possiblesolutionto this problemis to includec in

amultiobjectie criterion on the size of E(c). For in-

stancewe canchoosea criterionin theform (f(P) +

n %) wheref (P) is atermaccountingor theinfluence
of P onthesizeof £(c) andn is a positive weighting
constant.Then, different criteria can be tried out in

orderto find thebestsolution.

Similarly to the other casesgcondition (18) becomes
a BMI when we are interestedin synthesizingan

contractve ellipsoidalset.In this casewe canusethe

following relaxation algorithm, whose corvergence
canbededucedsimilarly asin Algorithm 1:

Algorithm3. :

(1) Choosdd < Qmin< | and0 < &.

(2) Fix Qmin ande obtainedn the previousstep,and
searchfor P by minimizing (f (P) +n3) subject
totheLMI constraintgivenby (18)-(i)-(ii)-(iii ).

(3) Fix P obtainedn step2. Minimize p= % subject
to LMI constraintsgiven by (18)-(i)-(ii)-(iii)
with €, Qmin andp= % asdecisionvariables.

(4) Gotostep2until adesiredprecisionis achieved..

6. NUMERICAL EXAMPLE

The goal is to comparethe effectivenessof the al-

gorithmsin synthesizingarge stability domainsand
to verify the actual effect of the conserative steps
involvedin eachalgorithm.We solve the problemof

finding an ellipsoidal asymptoticstability domainby

applyingeachof the methodsdescribedn the paper
For eachmethod,we searchfor the bestpossibleel-

lipsoid. All the resultsare plotted to allow a visual

comparisorof thesizeof thestability regionsobtained
with eachmethod.

Considerthe multi-input secondrderlinearsystem:

o[8[

01 -3 01
_[5].. [-0.7283-00338
P=12 = | —0.0135 —1.3583

For the 1st condition of the regions of saturation
approachwe have applied Algorithm 1 considering
as criterion the maximizationof the minor axis of
the ellipsoidalregion (i.e. minimizationof the greater
eigervalueof P). The optimal valuewas obtainedfor

o 0.5886 0.0023
— 3 :
y=0.25whichisp=10- [0.0023 0.2800} ;e=1

No solution was found with 2nd condition of the
regionsof saturatiorapproach.

For the polytopic modelingapproachwe alsoconsid-
eredthe maximizationof the minor axis of the ellip-
soidalregionin theapplicationof Algorithm 2. Initial-
izing @ = 1, we obtaineda = [0.0275 0.0034 and

0.1608 0.0001
_ a4 o
P=10" {0.0001 0.1592} e=1



Fig. 1. Regions of saturationlst condition (dashed);
polytopic approach (solid); sector approach
(dash-dotted)

In the sectormodelingapproachye have considered
in step2 of Algorithm 3, thecriterion 1001+ OmaxP)
to be minimized with p = % ConsideringQmax = I2
and startingwith Quin = 2 and € = 0 we obtained

c=6.9782x 10° £ = 9.1709x 10~° andthefollowing
_ [013020.0020], , _[0.0296 O
~|0002001261)" ™7 | 0 00055

Figure 1 depictsthe ellipsoidsobtainedwith the dif-

ferent approachesNote that the ellipsoid obtained
with thepolytopicapproachs slightly biggerthanthe
oneobtainedwith the sectorapproachlt is important
to notice that the systemhastwo other equilibrium
points at [2] =4 [2_57733311] The set obtained
with the regionsof saturationlst conditionis signif-

icantly smallerthan the setsobtainedwith the other
approaches.

7. CONCLUDING REMARKS

Three diferent methodsto synthesizeellipsoidal re-

gions of asymptoticstability for linear systemswith

input saturatiorhave beencomparedAll themethods
weregivenin termsof LMI/BMI tests.

Themainsourceof conserativenessanbe summa-
rized asfollows. (i) Regionsof satuation modeling
Key stepsin the developmentof the test conditions,
including the useof the S-procedure(ii) Differential
inclusion modeling Stability is ensuredfor the dif-
ferential inclusion. Even thoughit encompassethe
dynamicsof the saturatedsystem|t alsoincludesdy-
namicsthat are not inherentto the saturatedsystem.
(iiiy Sectormodeling The circle criteria guarantees
stability for all nonlinearitiesatisfyingthesectorcon-
dition ratherthanonly for the saturatiomonlinearity

In the problemof synthesizinga contractive ellipsoid,
the testconditionsare BMIs for all methodsconsid-
ered leadingto a difficult problemto solve. Thecom-
paratieresultsprovidedhave beenobtainecby means
of relaxationmethods.

The sectormodelingleadsto the smallestnumberof
LMIs. A singleLMI playstherole of 2™ LMls in the
differential inclusion modelingand 3™ LMIs in the

modelingby regionsof saturationOn the otherhand,
this schemedoesnot allow normalizationof the level

setof the Lyapuna function,asopposedo all other
testconditionspresentedThis factmay have sensible
implicationsin the conserativenesof theresults.
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