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Abstract: In this paper the problem of modelling partial mixing phenomena, mostly 
relevant in environmental and reactors modelling practice, is considered. The 
ultimate modelling goal is to find identifiable, finite-dimensional state-space 
models, which are physically interpretable, realisable and which describe partial 
mixing. Hence, realization theory will be linked to prior physical systems 
knowledge to answer the question which mixing models are good candidates in 
environmental/reactor systems modelling. The starting point is compartmental 
systems modelling with backflows. It appears however that only a limited set of 
low-dimensional structures is identifiable. From the real world example given in this 
paper it appears that an appropriate, physically interpretable and realisable model 
within this class of models cannot be easily found. Copyright © 2002 IFAC 
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1.  INTRODUCTION 

 
Mixing plays a key role when substances are 
transported by air or water flow. In the modelling of 
the hydraulics in reactor systems two approaches 
prevail. The first one is based on the assumption of 
an ideally mixed liquid leading to a CSTR model and 
in the second approach one assumes no mixing at all, 
so that a pure plug flow results. Clearly, in practice 
most often partial mixing will appear. 
Due to the increasing computational possibilities and 
the availability of simulation packages a growing 
interest in advanced modelling of the reactor's 
hydraulics, in addition to the biochemistry, can be 
observed. A physically-based modelling approach, in 
which partial mixing plays a key role, leads to a 
convection-diffusion (CD) equation (see e.g. Makinia 
and Wells, 2000). For implementation a common 
approach is to discretise this so-called infinite-
dimensional system description using an appropriate 
numerical scheme. In general, this discretisation step 
leads to a set of ordinary differential/difference 
equations of high dimension, which may cause 

computational problems. Alternatively, in the past 
active and dead zone (ADZ) models or finite stage 
models (see Ferrara and Harleman, 1981; Beer and 
Young, 1983) have also been proposed. Recently, an 
approach using the results of CFD (computational 
fluid dynamics) analysis, providing static flow fields, 
has been developed. Subsequently, on the basis of 
these flow fields high-dimensional compartmental 
models with backflows, parallel and/or circular flows 
are derived (see e.g. Alex et al, 1998; Hunze et al, 
2000). Again a high-dimensional system results. The 
main problem associated with these conceptual 
modelling approaches is how to choose the transfer 
coefficients between and the volumes of the different 
compartments. If I/O (input/output) data becomes 
available one can try to estimate these coefficients 
from the data. But then the structural identifiability 
property of the postulated model, including output 
equations relating the sensor outputs to the states, is 
crucial! 
The objective of this paper is now to analyse the 
system theoretic properties of some very elementary 
compartmental models with different flow paths that 
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are candidate models for describing the partial 
mixing phenomenon. As far as the authors are aware 
no such study linking realization theory and prior 
physical/hydraulic systems knowledge has been 
performed in the past. And, thus the question which 
are good candidate models for describing partial 
mixing cannot be answered simply. This study is 
therefore relevant to the hydraulic modelling of 
reactors and environmental systems. As mentioned 
before, the emphasis will be on the identifiability 
properties of these a priori postulated models (see 
also Young and Lees (1993) for a discussion on this 
topic that starts from the experimental data). For 
simplicity, we restrict ourselves to non-reactive 
reactor systems, so that linear models result. From 
that point of view extension to models with zeroth- or 
first-order reaction terms is straightforward (see e.g. 
Dötsch and van den Hof (1996) for the non-linear 
case). Our approach is as follows: (i) list appropriate 
low-dimensional system configurations allowing 
input/output splitting, circular and parallel flow 
patterns, (ii) provide a state-space model of the 
system configuration, (iii) test whether a minimal 
realisation (i.e. system is observable and 
controllable) has been obtained, otherwise calculate a 
minimal realisation, (iv) give the I/O model using 
Laplace transformation (i.e. determine the transfer 
function G(s,ϑ)), and finally (v) test structural 
identifiability of the given system configuration. 
In the next section some preliminaries about 
elementary compartmental models and associated 
identifiability issues will be presented first. Then, in 
section 3 some system theoretic properties of 
compartmental models will be presented and 
illustrated to some prespecified models. The results 
will be discussed in the section 4. Finally the paper 
ends with some concluding remarks 
 
 

2.  PRELIMINARIES 
 
A compartmental model consists of a finite number 
of compartments, which are assumed to be ideally 
mixed. In general, compartmental models are 
dominated by the law of conservation of mass. Each 
compartment with volume Vi is subject to two or 
more possible flows, as illustrated in Fig. 1 (see 
Bellman and Aström (1970), but also van den Hof 
(1996) for a recent treatment of compartmental 
systems). 
 

 

 
 

Figure 1: Compartment with possible flows. 

 
In what follows, it is assumed that each compartment 
has constant volume. Hence, for compartment i the 
following volume, under constant specific density, 
balance equation holds, 
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It is further assumed that fij = kij Q, where Q in m3/s 
is a positive constant flow and kij ≥ 0, which are 
called the fractional transfer coefficients. Let Ii = Q, 
then it can be easily verified from Fig. 1 that, for 
instance, ki0 = 1+ kij – kji, so that algebraic 
relationships appear. In addition to this volume 
balance (1), the mass balance equations for the inert 
substance with concentration ci in kg/m3 will be 
added, 
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where cin is the input concentration in the inflow 
from outside the system. Notice that (2) can be 
written as the general linear system: 

)()()( tutxtx Γ+Φ=& , where the system matrix Φ 
and input matrix Γ are introduced here for later use. 
Furthermore, it is assumed that the observed output 
can be expressed as a linear combination of the 
concentrations, i.e. 

cy Η=              (3) 
where c = [c1, c2, …, cn]

T is the state vector, i.e. the 
vector containing all concentrations in the n-
compartmental system, also called the state vector. In 
what follows, for simplicity and without loss of 
generality, only the single output case is considered. 
Note that the output is not necessarily related to the 
outflow of the compartmental system.  
 
Compartmental systems can also be represented by a 
directed graph, in which each compartment is 
represented by a vertex or node and the flows by a 
directed arc. For describing mixing phenomena three 
elementary classes of compartmental systems will be 
distinguished in the sequel (see Fig. 2). The first class 
contains so-called catenary, if f1n = fn1 = 0, or  
circular systems, if f1n ≠ 0 and/or  fn1 ≠ 0. A typical 
example of a catenary system is a tanks-in-series 
model with backflows (see Fig. 3A), while such a 
model of, for instance, an oxidation ditch or carrousel 
leads to a circular system description (see e.g. 
Abusam et al., 2000). The second class is the so-
called class of mammilary systems, which all have a 
central or mother compartment (see Figs. 2B-3B). 
The third class contains interconnected parallel 
systems (see Figs. 2C-3C). 
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Figure 2: Elementary compartmental systems: A. 
circular/catenary, B. mammilary and C. 
interconnected parallel. 
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Figure 3: Typical side-viewed mixing patterns: A. 
catenary, B. mammilary and C. interconnected 
parallel. 

 
In the next section, each of these compartmental 
systems will be subject to a structural identifiability 
analysis in order to obtain physically-based, 
structural identifiable state-space models of the form 
(2-3) for describing partial mixing. 
But, let us first recall the structural identifiability test 
in a very pragmatic way. That is, let G(s,ϑ) be a 
parameterised transfer function of the system, where 
ϑ is a p-dimensional parameter vector. The model 
structure is said to be globally identifiable at ϑ* if the 
equations in ϑ that arise from the equivalence 

G(s,ϑ) ≡ G(s,ϑ*)   ∀s 
 

has the solution:  ϑ = ϑ* 
 
Hence, the Laplace transform of the linear system (2-
3), providing the parameterised transfer function 
G(s,ϑ), is needed for this analysis. Furthermore, if 
the model is structural identifiable, for practical use 
relationships between the physically interpretable 
parameters (kij , Vi) and the transfer function 
parameters gk for k = 0, 1, 2, … , given the empirical 
transfer function G(s), should also be provided. For 
the problem of how to obtain G(s), either directly or 
via transformation of a time series model, from I/O 
data we refer to classical system identification books 
as Norton (1986) and Ljung (1987). 
 
 
3.  SYSTEM THEORETIC PROPERTIES OF TWO-

COMPARTMENTAL MIXING MODEL 
 
Let us as a first example consider the following 
system configuration (see Fig. 4). The introduction of 
the backflows can be motivated as follows. Starting 
from the convection-diffusion (C-D) equation and 
after semi-discretisation with step ∆z one obtains, 
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where i indicates the compartment index, D is the 
diffusion coefficient and ν the velocity. Hence (4) 
describes the concentration in the ith compartment as 
a function of the concentrations in the compartment 
i-1 to i+1, and thus backflows naturally appear. 
Instead of starting the modelling from this C-D 
equation the key idea here is to find a physically 
interpretable mixing model structure from the data. 
As mentioned before fixed constant volumes are 
assumed, so that the outflow (Q) equals the inflow. 
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Figure 4: Two-compartmental model with backflow. 
 
Furthermore, the positive mixing parameter k12 is 
introduced, such that the flow from compartment 1 to 
2 is equal to k12 Q in order to allow a backflow. 
Hence, the flow from compartment 2 to 1 is equal to 
(k12-1) Q. Notice then that backflow occurs for k12 
>1, which puts an additional constraint on the 
fractional transfer coefficient. And thus, in this 
particular case the following mass balances for an 
inert substance with concentration ci(t) for i =1, 2 can 
be derived for each ideally mixed compartment: 
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where cin(t) is the control input, that is the known 
incoming concentration. Furthermore, if only the 
concentration in compartment 2, c2(t) , is measured, 
the following output equation can be added: 
 )()( 2 tcty =             (7) 
In matrix-vector notation: 
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It can be easily verified, using the Matlab symbolic 
toolbox and the controllability and observability 
functions ctrb and obsv, that (8) is a minimal state-
space realisation (i.e. system is controllable and 
observable, see e.g. Kwakernaak and Sivan, 1972) 
for almost any parameter value. The transfer function 
of this system configuration is given by 
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where ϑ := [k12 V1 V2]
T. Hence, it can be easily 

verified that only two parameter combinations, for 
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Consequently, only two out of the three physically 
interpretable parameters can be determined. Select V2 
such that V2 < V, the total reactor volume. Then, from 
(9) the following estimates are obtained: 
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The estimated total volume is found from 
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21̂ =+ , which may appear to be smaller than 

the actual volume, indicating that the active mixing 

volume is smaller than the total reactor volume. A 
remarkable result is found, when V is considered to 
be exactly known a priori. Then after substituting V2 
= V – V1 in (9) only one identifiable parameter (k12) 
remains! It can be further shown, that the model for 
any k12 > 1 will always give a non-oscillatory and 
stable response. 
However, if the sensor is placed in the first 
compartment, that is Η = [1 0], the following transfer 
function is obtained: 
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From Q/V1 = q1 one can estimate V1 and thus one 
extra equation is available. Hence all three 
parameters, k12, V1 and V2, can be identified from I/O 
data. Consequently, the sensor location is crucial. 
From this example the following results, which can 
also be easily proven using elementary algebra and 
matrix theory for the general case, are deduced:  
 
Result I: for physical, mass conserving 
compartmental systems without by-passes, as e.g. (9) 
and (13), (in mathematical terms: strict proper 
systems with unit gain) of order n at most 2n-1 
parameters are structural identifiable. 
 
Result II: locating the sensor in the "input" 
compartment will lead to the maximally possible 
structural identifiable parameters. 
 
In order to appreciate the minimal realisation 
condition, mentioned before, consider the following 

example, where 
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[ ]01=Η . One can easily verify that this system is 
uncontrollable, but it is observable for k1 ≠ 0! 
Consequently, this is a non-minimal realisation. 
Calculation of the transfer function gives: G(s) = Η 
(sI - Φ)−1 Γ = 1/s. Hence, both k1 and k2 can never be 
identified from I/O data. It should be noted that 
minimality is not sufficient for identifiability (see 
example above), but non-minimality leads in general 
to unidentifiability! 
It should be noted that this paper focuses on 
structural identifiability, implicitly assuming that all 
transfer function coefficients qk and pk, for k = 0, 1, 2, 
…, are available. In practice this means that the 
system should be persistently excited, so that these 
coefficients can be estimated from I/O data. 
 
 

4.  RESULTS AND DISCUSSION 
 
In this section alternative compartmental model 
structures, such as mammilary and interconnected 



parallel systems of order two and three, are also 
evaluated. In the sequel only the case with optimally 
chosen sensor location will be considered, that is 
with sensor in the "input" compartment. 
For a second-order mammilary system with inflow 
and sensor in the first compartment the following 
state-space model, where k21 = k12, can be derived 
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So the transfer function becomes, 
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Again, for k12 ≥ 0 non-oscillatory, stable responses 
appear, the model is a minimal realisation and all 
three parameters k12, V1, and V2 are identifiable. The 
estimates are found from 
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Finally a second-order interconnected parallel system 
with inflow splitting coefficient kin can be 
represented as 
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Due to space limitations the transfer function related 
to (19) is not given here. It should be noted that kin ∈ 
[0, 1] and 0 ≤ kin – k12 + k21 ≤ 1. Given these 
restrictions no unstable behaviour can be expected. 
Notice that the model contains five unknowns, while 
only three equations can be deduced (see also Result 
II) . Hence, 10 combinations have to be evaluated. It 
appears, however, that only the parameter sets {k12, 
k21, V1 or V2} can be uniquely identified. Because of 
the complexity of the solutions these are not 

presented here. Consequently, all combinations with 
kin are unidentifiable. This can be easily understand 
because of the symmetry in the model structure (see 
Fig. 2C). The three combinations with both V1 and V2 
lead to even three or four solutions. If the sensor is 
placed in the first compartment instead of in the 
outflow the identifiability properties significantly 
increases: all combinations with k12, except {k12, k21, 
V2} are identifiable! For the case the sensor is placed 
in the second compartment similar results are 
obtained. Of course, also special cases where e.g. k12 
= 0,  k12 = k21 = 0 or k12 = kin + k21 can be evaluated. 
Only in the last case, where k12 = kin + k21, 
identifiable parameters, in particular {kin, k21, V1}, are 
found. 
Extension to third-order model structures lead to the 
following conclusion. Only a catenary system with 
sensor in the "input" compartment lead to a fully 
identifiable set, i.e. the set  {k12, k21, V1, V2, V3}. In all 
other cases symmetry appear and thus in general two 
or more solutions will be found. Hence, unique 
representations will not be found. Addition of sensors 
in the different compartments will certainly help to 
improve the identifiability of the system. 
Let us finally demonstrate the theory to a practical 
example, which can be found in Young and Lees 
(1993). In this example, the modelling of solute 
transport in an experimental soil column from 
experimental data is considered. Young and Lees 
identified a discrete-time transfer function of order 
[3, 3, 0] (standard order notation), which gave an 
almost perfect fit and which for our case has been 
converted, using a zero-order hold approximation, to 
the following continuous-time transfer function: 
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On the basis of this empirical transfer function we 
will try to find an identifiable, physically 
interpretable state-space realisation. Notice first that 
the static gain of G(s), setting s≡0, is equal to 12.32 
and not 1.0 as expected. Hence, in what follows this 
factor is assumed to be originated from the 
conversion from input to measurement. 
Let us start with a third-order catenary system with 
unknowns k12, k23, V1, V2 and V3. It appears, however, 
that the unique relationships between these 
unknowns and the transfer function coefficients 
result in negative values for both  k23 = −367.4 and D3 
= V3/Q = −104.9. Hence, this type of realisation is 
physically unfeasible. If a by-pass from compartment 
1 to 3 with fractional transfer function k13 is added, it 
can be shown that either the estimate of k13 or V2 is 
negative. And thus, again an unfeasible solution 
appears. Let us try next a mammilary system with 
three compartments. From symmetry of the problem 
we know that in this case two solutions can be 
expected, which are interrelated. However, the result 
is that except for V1 all other parameter estimates 
take imaginary values. Consequently, a mammilary 



system representation is unfeasible, too. Investigation 
of parallel systems without interaction lead to the 
conclusion that only exponential decaying responses 
result, and thus no appropriate fit can be obtained. At 
last, mixed catenary/parallel system have been 
investigated. First of all no explicit relationships 
between five physical system parameters and the 
transfer function coefficients could be obtained using 
Maple symbolic software. Direct fitting of the 
impulse response generated from (20) gives one 
reasonable approximation using a parallel 
interconnected system (compartments 1 and 3) with 
in the upper path an extra compartment (2). For this 
structure the following six parameters have been 
found: k01 = 0.16, k12 = 0.86, V1/Q = 0.21, V2/Q = 
0.21,  V3/Q = 1.0 and k13 = 0.0 with mean square 
error of 4*10−5. However, an exact fit using the 
mixing theory of section 2 could not be realised. A 
model structure in line with the one suggested by 
Young and Lees, containing four compartments gives 
k01 = 0.84 (related to input of slow path), V1/Q = V2/Q 
=  V3/Q = 0.31 and  V4/Q = 4.81 with MSE equal to 
1.4*10-5. Typical fits are presented in Fig. 5. 
In conclusion, the expected exact fit could not be 
realised due to lack of identifiability of the mixing 
models, complexity of the analytical solution and the 
existence of imaginary solutions. Furthermore, the 
numerical search is hampered by the existence of 
local minima. Hence, for this specific case the 
conjecture of parallel flow (as suggested by Young 
and Lees) with a fast first-order system and a slow 
third-order system could not be further worked out 
along the line of section 2. 

Figure 5. Typical impulse response fits of 3rd-order 
(...) and 4th-order system (---) with data from Young 
and Lees (1993). 
 
 

5.  CONCLUDING REMARKS 
 
In the paper a number of low-dimensional system 
configurations with catenary/circular and 
interconnected parallel flows have been evaluated 
using elementary Laplace transform analysis. It 
appears that for full identifiability from given I/O 

data the number of parameters, and thus the number 
of different compartments and flow patterns, should 
be limited, unless additional sensors are placed. 
Given the empirical transfer function found from 
solute transport data (see Young and Lees, 1993) no 
physically interpretable (in line with the mixing 
theory of section 2) and feasible state-space 
realisation could be found. Catenary, circular and 
mammilary structures led to models with negative or 
even imaginary fractional transfer coefficients. 
Inclusion of parallel pathways was not successful 
either due to lack of identifiability and the existence 
of imaginary solutions and of local minima. 
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