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1. INTRODUCTION

Strictly speaking, dynamics of a large number of
systems such as structures, acoustic enclosures,
etc., consist of an infinite number of modes. Dy-
namics of these systems are known to be governed
by certain partial differential equations. These
partial differential equations are often discretized
using the modal analysis procedure. As a result of
this discretization the partial differential equation
is approximated by an infinite sum. However, it is
well-known that in order to represent the dynam-
ics of such systems, including a large number of
modes in the series will suffice (Hughes, 1987).

For control design purposes, these modes can be
categorized into two groups. These are the in-
bandwidth modes (those modes that lie within the
bandwidth of interest from the control point of
view), and the out-of-bandwidth modes. In con-
trol design problems, very often the infinite series
is truncated by removing the out-of-bandwidth
modes and keeping those modes that lie within
the bandwidth of interest. Poles of the truncated
model are precisely the same as the in-bandwidth

poles of the infinite dimensional system. However,
zeros of the truncated model may be significantly
different from those of the actual system. A con-
troller that is designed using such a model may
perform poorly when implemented on the real sys-
tem as the performance of the feedback controller
is largely dictated by the open loop zeros of the
underlying system. It is, therefore, important to
improve the in-bandwidth model of the system so
that high performance controllers can be designed.

One approach to minimizing the truncation er-
ror is to add a feed-through term to the trun-
cated model, where the feed-through term is made
up of the sum of DC contents of all the trun-
cated high-frequency modes. In the aeroelastic-
ity literature this method is referred to as the
mode acceleration method (Bisplinghoff and Ash-
ley, 1962). The mode acceleration method will
result in zero error at the DC. However, the error
will increase as we move to higher frequencies
within the bandwidth of interest. Furthermore,
this method is not optimal by any measure. In
reference (Moheimani, 2000), it is shown that a
feed-through term can be obtained by minimizing



the weighted Hs norm of the error system and
an analytic solution to the optimization prob-
lem is presented. In reference (Moheimani and
Clark, 2000), the same problem is addressed by
adding an out-of-bandwidth mode to the system,
hence reducing the in-bandwidth error even fur-
ther than that reported in (Moheimani, 2000).

All of the results reported in above references
are developed for models that have zero damping
associated with all the modes. This will not be a
cause of concern as long as the actual damping
terms are very small. This may be true for some
systems, however, when the underlying structure
has significant damping, the procedures reported
in the literature may not perform in a satisfac-
tory manner. This paper is aimed at developing
a procedure for minimizing the in-bandwidth er-
ror when the underlying system may have signif-
icant damping associated with each mode. Our
approach is to set up an optimization problem
and solve it using the recently developed convex
optimization techniques (Boyd et al., 1994).

2. PROBLEM STATEMENT

Dynamics of many systems such as flexible beams
and plates, strings, acoustic ducts and enclosures
are governed by specific partial differential equa-
tions. For example, dynamics of a thin beam
is governed by Bernoulli-Euler beam equation
(Meirovitch, 1990) and its associated boundary
conditions. These partial differential equations are
often discretized using the modal analysis proce-
dure (Meirovitch, 1986). Following this procedure,
one would typically obtain a model of the form
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Associated with each mode, there exists a specific
level of damping, which is often ignored at earlier
stages of the analysis. For control design purposes
the series is truncated by removing those high
frequency modes that lie out of the bandwidth
of interest. That is G(s) is approximated by
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Tt can be observed that poles of Gn(s) are similar
to the first N poles of G(s). However, as a result
of the truncation, zeros of Gn(s) may be different
from the in-bandwidth zeros of G(s). The reason
for this is that each truncated mode does contain
a DC term. Removing these high frequency modes
generates an error that might be significant at

low frequencies. The problem is more severe if
the actuator and sensor are colocated as noted
in (Clark, 1997). This problem can be addressed
by adding a feed-through term to Gn(s). That is,
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This technique is referred to as the mode acceler-
ation method (see page 350 of (Bisplinghoff and
Ashley, 1962)). The feed-through term added to
Gn(s) is the sum of DC contents of all the trun-
cated modes. This reduces the error at w = 0 to
zero. However, the error will increase as we move
to higher frequencies within the bandwidth of in-
terest. In references (Moheimani and Clark, 2000)
and (Moheimani, 2000) it is suggested that an
optimization problem can be set up to reduce the
in-bandwidth error. The solutions given in these
references are optimal in the Hs sense. However,
it is assumed that the effect of damping on all
the modes can be ignored. In this paper, we allow
for each mode to include a specific amount of
damping and we develop a convex optimization
based solution to the problem. Furthermore, we
allow for multi-variable models in our analysis.

3. OPTIMIZATION

Consider the multi-variable input-output model of
a structure obtained via modal analysis procedure
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This model is truncated by keeping the first N
modes, i.e.,
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A feed-through term is then added to (2)
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where the optimal K € R™*" is to be determined
such that:

K*=arg min [[W(s)(Gm(s)— Gn(s))I13.
()



Here W (s) is a low-pass weighting function whose
purpose is to emphasize the in-bandwidth error.
The cut-off frequency of this filter is typically
chosen to lie within the range wy < w < wn4-

The above transfer functions can be represented
in state space form as follows:
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with appropriate values for A, B, C, A, B, and

C3. Using the above notation, an expression for
the error system can be obtained as follows:
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Now, it is observed that Hs norm of the error
system, E(s) can be expressed as (Boyd et al,
1994)

IE(s)| = tr {CPC'} ()
where tr(Q) represents the trace of matrix Q and

P = P’ > 0 is the solution to the following
Lyapunov inequality

AP +PA' + (B1K + B;)(B1K + B2) <0.
(6)

Therefore, K* can be determined by solving the
following eigenvalue problem

minimize tr {CPC'}
hd ) = _
subject to [AP +PA B.K+B;

il il <0,P>0
KB, + B, —-I] ’

Now, a different performance measure for mini-
mizing the in-bandwidth error is considered, i.e.,
the H,, norm. The problem is then to determine
K*, where

K" =arg_min_[W(s)(Gm(s) -~ En(o))leo
)

To solve this problem we will use the strict
bounded real lemma;:

Lemma 3.1. (Petersen et al., 1991) The following
two conditions are equivalent:

(i) A is stable and [|C(sI — A)7'B||oc < 7.
(ii) There exists a matrix P > 0 such that

A'P+PA + ;1—2-PBB'P +C'C<0. (8)
Lemma 3.1 implies that the inequality

IC(sI — A) 7' (B1K + Ba)|loo < ¥

holds if and only if there exists a matrix P > 0
such that

AP+PA+ %P(ﬁlK +B3)(B1K + B2)'P +
c'C<o. 9
It is also noticed that (9) holds if and only if there
exists a matrix Q > 0 such that
QA+ AQ+ 73 (BiK + Bo)(BrK + Ba) +
Qc'cqQ<o. (10)

It is now possible to transform (10) into a linear
matrix inequality using the Schur complement
(Boyd et al., 1994). That is,

QA'+AQ QC' B;K+B;
cQ -1 0 <0. (11)
(B:1K+B3) 0 —21

Now, the optimization problem (7) can be solved
via the solution to the following eigenvalue prob-
lem:
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Fig. 4.1. The plate model
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4. SIMULATION RESULTS

Simulation results are presented in this section
to demonstrate the effectiveness of the proposed
LMI approach. MATLAB LMI toolbox is used
to perform the LMI optimizations explained in
Section 3.

Here, a flexible structure system is considered:
a plate with pinned boundary conditions. Two
piezoelectric ceramic patches are attached sym-
metrically to either side of the plate, which work
as an actuator and a sensor respectively. Piezo-
electric actuators and sensors have been used in
many vibration control applications of flexible
structures (Moheimani and Ryall, 1999; Clark et
al., 1998; Dimitriadis et al., 1991).

The structure consists of an aluminium plate of
800 mm x 600 mm x 4 mm, which is pinned all
around. Two identical and colocated piezoelectric
ceramic patches (72.4 mm x 72.4 mm x 0.191 mm)
are used. The plate model is shown in Figure 4.1.
For dimension and other physical properties of the
structure, refer to (Halim and Moheimani, 2000).

A model of the structure is obtained via modal
analysis technique (Meirovitch, 1986; Reismann,
1988). The transfer function from the actuator-
voltage to the sensor-voltage has a similar form
with (1) if the model is truncated up to M modes.
In the simulation, only the first six modes are
included in the truncated plate model, Gn(s), i.e.
N = 6. The feed-through term calculation is based
on the higher-order model of 25 modes, Gp(s),
i.e. M = 25. A low-pass filter of 4t* order, with
the cut-off frequency of 249.7 Hz, is used in the
simulation. The cut-off frequency is chosen to be
between the 6t* and 7" resonant frequencies.
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Fig. 4.2. Comparison of frequency responses (mag-
nitude) of Gn(s) and G (s)
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Fig. 4.3. Comparison of frequency responses (mag-
nitude) of Gn(s) and Gpr(s): Hz norm ap-
proach

Figure 4.2 shows the comparison of the frequency
response (magnitude) of those two models. It can
be observed that the zeros of the truncated model,
Gn(s), are significantly different from Gps(s)
since the effect of out-of-bandwidth modes are
ignored. Furthermore, there are also gain differ-
ences between the two models, especially at low
frequencies.

An H,; norm approach for obtaining the feed-
trough term is considered. The LMI optimization
searches for the feed-through term that minimizes
the Hy norm of the error system described in
(4). Figure 4.3 shows the corrected truncated
model, Gn(s), in comparison with the higher-
order model, G (s). The frequency responses
with frequency up to cut-off frequency are plotted
since the model is only intended to be corrected
up to that frequency. The zeros of the corrected
model are now closer to the zeros of higher-order
model. The gain differences of the two models are
also smaller due to an additional gain contributed
by the feed-through term of the corrected model.

Similarly, the H,, norm approach is used to obtain
the feed-through term that minimizes the H,,
norm of the error system described in (7). Fig-
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Fig. 4.4. Comparison of frequency responses (mag-
nitude) of Gn(s) and Gu(s): He norm ap-
proach

ure 4.4 compares the corrected truncated model,
Gn(s), and the higher-order model, Gs(s). Com-
pared to Figure 4.2, the zeros and the gain of the
corrected model are closer to those of higher-order
model. However, the result for the H,, norm ap-
proach, at frequencies lower than 215 Hz, is worse
than that of the Hs norm approach (compare with
Figure 4.3). To analyze this behaviour, the error
frequency response for both approaches need to
be plotted.

Figure 4.5 shows the error frequency response
(magnitude) for H, norm and H, norm ap-
proaches. From zero frequency up to frequency
of 214.4 Hz, the error of the Hy norm approach
is less than that of H,, norm approach. This is
reasonable since the H, norm approach minimizes
the error system across the frequency bandwidth.
In contrast, the H,, norm approach minimizes
the H,, norm of the error system, which usually
occurs at a higher frequency. This means that for
a better performance at low frequencies, a higher
order low-pass filter is desirable in order to re-
duce the magnitude of error at out-of-bandwidth
frequencies. However, as a consequence, the H,
norm approach has a better performance at higher
frequencies.

This paper essentially provides an alternative way
of obtaining the feed-through term for model
correction. The performances of our LMI based
approaches with the mode acceleration method
can now be compared. In Figure 4.5, the error
due to the mode acceleration method is also
plotted. As expected, the error is zero at w =
0 since the method corrects the zero-frequency
gain of the truncated model. However, the error
increases exponentially as frequency increases. At
frequencies higher than 198.35 Hz, the error of
the mode acceleration method exceeds that of our
LMI based approaches as shown in Figure 4.5.
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Fig. 4.5. Comparison of error frequency responses
(magnitude)

5. CONCLUSION

An alternative procedure to the mode acceleration
method is introduced using a convex optimization
approach. Two approaches are discussed, which
are the minimizations of the H; and H,, norms
of the error system respectively. The H; norm
approach out-performs the H,, norm approach at
lower frequencies, while the H., norm approach
has a better high-frequency performance. These
approaches perform better at higher frequencies
than the mode acceleration method.

6. REFERENCES

Bisplinghoff, R.L. and H. Ashley (1962). Princi-
ples of Aeroelasticity. Dover Publications Inc.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakr-
ishnan (1994). Linear Matriz Inegualities in
System and Control Theory. STAM. Philadel-
phia, PA.

Clark, R.L. (1997). Accounting for out-of-
bandwidth modes in the assumed modes
approach: implications on colocated output
feedback control. Transactions of the ASME,
Journal of Dynamic Systems, Measurement,
and Control 119, 390-395.

Clark, R.L, W.R. Saunders and G.P. Gibbs
(1998). Adaptive Structures: Dynamics and
Control. John Wiley & Sons. Canada.

Dimitriadis, E.K., C.R. Fuller and C.A Rogers
(1991). Piezoelectric actuators for distributed
vibration excitation of thin plates. ASME
Journal of Vibration and Acoustics 113, 100—
107.

Halim, D. and S.0.R. Moheimani (2000). An op-
timization approach to optimal placement of
collocated piezoelectric actuators and sensors
on a thin plate. Technical Report EE0048.
Uni. of Newcastle. NSW, Australia. also to
appear in Mechatronics.



Hughes, P.C. (1987). Space structure vibration
modes: how many exist? which ones are im-
portant?. IEEE Control Systems Magazine
pp- 22-28.

Meirovitch, L. (1986). Elements of Vibration
Analysis. 2 ed.. McGraw-Hill. Sydney.

Meirovitch, L. (1990). Dynamics and control of
structures. John Wiley & Sons.

Moheimani, S.Q.R. (2000). Minimizing the effect
of out of bandwidth modes in truncated struc-
ture models.. Transactions of the ASME -
Journal of Dynamic Systems, Measurement,
and Control 122(1), 237-239.

Moheimani, S.0.R. and R.L. Clark (2000). Mini-
mizing the truncation error in assumed modes
models of structures.. Transactions of the
ASME, Journal of Vibration & Acoustics
122(3), 332-335.

Moheimani, S.O.R. and T. Ryall (1999). Consid-
erations in placement of piezoceramic actua-
tors that are used in structural vibration con-
trol. In: Proceedings of the 38% IEEE Con-
ference on Decision & Control. Phoenix, Ari-
zona, USA. pp. 1118-1123.

Petersen, I.R., B.D.O. Anderson and E.A. Jonck-
heere (1991). A first principles solution to the
non-singular H* control problem. Interna-
tional Journal of Robust and Nonlinear Con-
trol 1(3), 171-185.

Reismann, H. (1988). Elastic plates: theory and
application. John Wiley & Sons. Canada.



