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Abstract: Available routing strategies for traffic networks may be classified as feedback
and iterative strategies. Recently, a new predictive feedback strategy has been
developed incorporating the advantages of both kinds of strategies and attenuating their
disadvantages. The new strategy runs a mathematical model once at each time step and
bases its feedback routing decisions on the predicted traffic conditions. Preliminary
investigation indicated that very satisfactory routing results could be achieved by use of
this strategy. In this paper, the performance of the new strategy is evaluated in more
detail by comparison with the feedback and iterative strategies. Copyright © 2002 IFAC
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1. INTRODUCTION

Traffic networks typically include various couples of
network nodes each connected with multiple routes.
Under user equilibrium conditions, all alternative
routes for any node couple that are actually utilized
should have equal travel times that are not greater
than the travel times on non-utilized routes. User-
equilibrium traffic conditions usually improve the
network performance (although they are not
explicitly aiming at system-optimum conditions)
without disadvantaging a part of the driver
population. For this reason, most modern route
guidance systems aim at establishing user-
equilibrium conditions within traffic networks
(Papageorgiou, 1990).

Routing strategies may be distinguished into two
classes:
• Feedback strategies may be employed to

approximate dynamic user equilibrium in traffic
networks. This is achieved via simple reaction to
real-time traffic measurements with the aim of

equalizing instantaneous (reactive) travel times
along alternative utilized routes despite the
impact of various disturbances including
incidents, weather conditions, demands, OD rates,
compliance rate, etc.

• Iterative strategies may be applied to establish
exact dynamic user equilibrium in traffic network
models. This is achieved by running the traffic
network model repeatedly over a future time
horizon, based on real-time measurements and
disturbance prediction, in order to equalize
experienced (predictive) travel times along
alternative utilized routes.

Wang, et al., (2002) have recently developed a new
predictive feedback routing strategy. The simulation
results indicated that the new strategy incorporates
the advantages and attenuates the disadvantages of
both classes of routing strategies above. The new
strategy is further investigated in this paper, and its
performance is evaluated in more detail by
comparison with feedback and iterative strategies.
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2. THE ROUTE GUIDANCE PROBLEM

Route guidance here aims at establishing dynamic
user equilibrium (DUE) in a traffic network by
guiding vehicles among alternative routes over a
given time horizon. The attribute dynamic
emphasizes the fact that traffic demands, OD rates,
traffic states, and travel times vary over time and
space. This chapter briefly introduces the DUE
condition, routing strategies, and corresponding
notions. For more details, see Wang et al., (2001a, b).

Splitting rates play a crucial role in route guidance.
With the aid of virtual nodes and dummy links
(Papageorgiou, 1990), any bifurcation node in a
network may be decomposed into several nodes so
that each resulting bifurcation node has only one
entering link and two leaving links (a primary and a
secondary). Consider such a bifurcation node n  and
a destination j  that may be reached via both leaving
links of node n . There is exactly one splitting rate

jn,β  for such a (n,j)-couple, which determines the

portion of j -bound traffic that leaves node n  via its
primary leaving link. For a couple ),( jn , the
directions to j  via both leaving links of n  are
referred to as the primary and secondary directions.

The compliance rate ]1 ,0[∈ε  reflects the
conformity degree of drivers to route
recommendations. The impact of partial compliance
on route guidance may be modeled as

N
jnjnjn kkB ,,, )1()()( βεεβ −+= (1)

where ,...2 ,1=k denotes the time instants, jn,β  is the

splitting rate ordered by the routing strategy, N
jn  ,β  is

the nominal splitting rate (in the absence of
guidance), and jnB ,  is the real splitting rate. All these

variables are real numbers within [0, 1].

Instantaneous (reactive) travel time along a route
(including several links) is an ideal travel time spent
by an ideal vehicle traveling along that route under
the currently prevailing traffic conditions.
Experienced (predictive) travel time along a route is
the real travel time that vehicles will actually
experience along the route. Let )(p

j , knτ  and )(s
j , knτ  be

(instantaneous or experienced) shortest travel times
along the primary and secondary directions of a
couple ),( jn , respectively. Travel time difference
of a couple ),( jn  is defined as

)()()( ,,, kkk p
jn

s
jnjn τττ −=∆ .

The dynamic user equilibrium condition may be
formulated as

0)(, ≥∆ kjnτ if 1)(, =kjnβ
0)(, =∆ kjnτ if 1)(0 , << kjnβ (2)

0)(, ≤∆ kjnτ if 0)(, =kjnβ

for all considered ),( jn -couples. When eq. (2)

holds, travel times along both directions are equal if
both directions are utilized, i.e. if 1)(0 , << kjnβ .

Thus the objective of routing strategies is to keep
)(, kjnτ∆  close to zero so long as the splitting rate

does not hit the bounds.

Splitting rates may be calculated by a variety of
routing strategies. Feedback strategies attempt to
keep the instantaneous travel time differences close
to zero, while iterative strategies aim at equalizing
the experienced (predicted) travel times along both
directions of each considered ),( jn -couple. A PI-
controller may be employed as a feedback strategy
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where pK  and iK  are the proportional and integral

gains, respectively; jn,τ∆  is the reactive travel time

difference. Iterative strategies run a traffic network
model over a future time horizon repeatedly. At each
iteration, the splitting rate trajectory calculated in the
last iteration is updated in a suitable way and then
applied to the model to produce the experienced
travel times of the current iteration, and so forth, until
the DUE condition (2) is satisfied with sufficient
accuracy. The )( , kjnβ  resulting from both strategies

are truncated if they exceed the admissible region [0,
1]. A disbenefit criterion is used to assess the degree
of approximation to the exact DUE over the whole
time horizon. It reflects the total vehicle-hours
wasted on time-longer directions due to non-DUE
routing. If the total disbenefit value is zero, the DUE
condition (2) is fully established.

3. PREDICTIVE FEEDBACK ROUTING
CONTROL STRATEGY

The predictive feedback routing control structure is
shown in Figure 1. The whole structure mainly
includes the process under control (freeway
network), two feedback controllers, and a predicting
model (predictor). Without model mismatch (the
predicting model matches exactly the freeway
network dynamics and disturbance prediction is
accurate), it is sufficient to employ only feedback
controller 1 to achieve nearly perfect routing
performance while feedback controller 2 is
introduced in order to obtain more satisfactory
routing performance in the case of model mismatch.

Modeling: The predictor may be based on a
macroscopic freeway network traffic simulator such
as METANET (Technical University of Crete and
Messmer, 2000). In our simulation-based
investigations, both the predictor and the freeway
network are using the same simulation tool
independently of each other. The input configuration
of METANET comprises network characteristics,



demands, OD rates, compliance rate, incidents, etc.
Thus, the differences in the input configurations of
both simulators may be used to emulate modeling
and prediction inaccuracies.

Input and output of the predictor: The predictor is
used for predicting the experienced travel times of
vehicles leaving a bifurcation node n  for a reachable
destination j  at each predicting time step (when

the predictor is activated). To this end, the splitt ing
rates calculated by feedback controller 1 at the last
predicting time step are used as constant inputs to
the predictor for a specified prediction horizon,
which should be long enough for all vehicles
mentioned above to reach their respective
destinations. The resulting predictive travel time
differences of all considered ),( jn -couples are the

(only) outputs of the predictor.

Initialization of the predictor: When the predictor
is activated, the (measured or estimated) density and
space mean speed of each freeway segment are
transferred to the predictor and used as initial state
for the predictor-run of the current time step.

Disturbance prediction for the predictor: The
disturbance prediction (demands, OD rates,
compliance rate, etc) is updated each time the
predictor is activated, and is used over the prediction
horizon. In this sense, the predictive feedback
controller works similarly to a rolli ng-horizon
procedure with a single forward model-run replacing
the multiple iterations of iterative methods.

Feedback controller 1: A static relationship is
actually obtained by running the predictor in the way
described above. With respect to such a static block,
an I-regulator is sufficient and guarantees zero-offset
in the output of the predictor, i.e.

)(ˆ)()1( ,,, kKkk jnijnjn τββ ∆+=+ (4)

where )(ˆ , kjnτ∆  are the predictive travel time

differences from the predictor. If the model-match is
perfect, )(, kjnβ  will quickly shift so as to equalize

the predictive travel times along alternative routes or
hit a bound.

Model mismatch and countermeasures: In the
presence of model mismatch, the pursued system
performance of the predictive feedback routing
controller may not be guaranteed. Model mismatch
may take place for the following reasons:
• Inaccurate model or parameter estimation
• Inaccurate disturbance predictions
• Inaccurate initial state
• Unpredictable traff ic incidents.
In order to tackle the negative impact of model
mismatch, an outer feedback loop (feedback
controller 2) may be introduced. Then the split ting
rates for the freeway network resulting from the
overall feedback routing strategies are calculated as
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where jn,β ′  denotes the ordered input to the freeway

network which differs from jn,β , the ordered input to

the predictor; jn,τ∆  represents the reactive travel

time difference from the network; pK  and iK ′  are the

proportional and integral parameters of the PI
feedback controller 2, respectively. In this paper, a
PI-controller is considered in the outer feedback
loop; but other types of controllers may also be
employed. For more details on the predictive
feedback routing strategy, see Wang, et al., (2002).

4. SIMULATION INVESTIGATIONS

4.1 Simulation setup

The test network is shown in Figure 2, where “N” ,
“L” , “O” , and “D” represent nodes, links, origins,
and destinations, respectively; the digit next to each
link name is its length (in km). Two routes
(directions) lead to destination D1 from bifurcation
node N1. The primary route consists of the links L2,
L4, and L6, while the secondary route consists of the
links L3, L5, and L7. Only the route guidance for
(N1, D1) is considered for this network.

A number of simulations have been conducted for
this network by use of the PI, iterative, and predictive
feedback (PF) strategies. For iterative and PF
strategies, each simulation run has a total duration of
3 hours (7:00~10:00 AM) with traffic demands
displayed in Figure 3, while for the PI-strategy each
simulation run has a total duration of 7 hours (7:00
AM~2:00 PM) with the same traffic demands for the
first three hours and with constant demands (same as
the values at 10:00 AM) for the remaining time
horizon. Two groups of traffic demand are
considered for the simulations. “Demand 1” is
utili zed for all simulations except for the robustness
test of the various strategies, where “demand 2” is
considered (note that the demand at O3 is the same
for both cases).  Similarly, two groups of OD rates
for (O1, D1), (O1, D2), and (O1, D3) are utili zed.
The first group (“OD 1”) is (0.92, 0.04, 0.04), while
the second group (“OD 2”) is (0.6, 0.1, 0.3). The
control interval is set equal to the simulation time
step (10 s) and the compliance rate is set equal to 1,
unless specificall y mentioned. Note that the
predicting time step for the PF-strategy always equals
the control interval.

Five simulation scenarios are considered for the test
network. (Demand 1, OD 1), (demand 2, OD 1), and
(demand 1, OD 2) constitute normal scenarios 1, 2,
and 3, respectively. Under normal scenario 1, the
strategies are tested with respect to various control
intervals and compliance rates, while under normal



scenarios 2 and 3, the robustness of the strategies is
tested with respect to demand and OD variations,
respectively. An incident scenario is the same as
normal scenario 1 except that an incident occurs at
7:50 AM in the middle of L6, and lasts 10 minutes.
During the incident, the freeway capacity of L6 is
reduced by 50%. A hybrid scenario is the same as
the incident scenario except that the control interval
is set equal to 150 s and 30% drivers are assumed to
disregard the route guidance. Note that the predictor
always runs under normal scenario 1, i.e. it has no
direct information about the variation of OD rates or
demands or compliance rate nor about the occurrence
of incident.

All simulation results are shown in Figures 4~14,
where predictive travel time differences are relative
travel time differences )(/)( ,, kk p

jnjn ττ∆  of the

freeway network. The corresponding disbenefit
values (calculated from 7:00 to 10:00 AM for each
strategy) are presented in Table 1. Note that the
iterative strategy is applied in an open-loop manner
(no rolli ng-horizon procedure is employed).

4.2 Simulation results

Unless specifically mentioned, the simulation results
for the PF-strategy are obtained without outer
feedback loop. Figure 4 shows that under the normal
scenario 1 the trajectories of splitti ng rates and
predictive travel time differences resulting from the
PF-strategy nearly coincide with those of the open-
loop iterative strategy. They both nearly perfectly
establish the DUE condition over the simulation
horizon. Comparatively, the PI-controller
approximately establishes the DUE condition over
the same time horizon. The simulation results under
the incident scenario are displayed in Figure 5. The
iterative strategy exactly establishes the DUE
condition in this case (assuming anticipated
knowledge of the incident occurrence to obtain
perfect reference routing), while the performance of
PF-strategy degrades only slightly during the
incident. On the other hand, the routing performance
of the PI-controller deteriorates as compared to
normal scenario 1. Figures 6 and 7 compare the
routing performance of the PI and PF strategies with
respect to various control intervals. Note that longer
control intervals may even slightly improve the
performance of the PI-strategy while the PF-strategy
is littl e sensitive to the control intervals so long as a
perfect predicting model is employed. Some
simulations are also conducted to investigate the
impact of partial compliance on the routing results. It
is demonstrated that the PI-strategy is not sensitive to
the partial compliance (Figure 8), while the open-
loop iterative strategy fails due to the model-
mismatch (Figure 9). For the PF strategy, three cases
are considered to test the impact of partial
compliance. The real compliance rate in the network
is set 0.5, while the predictor assumes; first, full

compliance ( 1ˆ =ε ); second, an inaccurate
compliance prediction ( 7.0ˆ =ε ); third, full
compliance but an outer feedback loop is added to
the control structure according to Figure 1. As shown
in Figure 10, a rough compliance prediction greatly
improves the routing performance as compared to the
no-prediction case ( 1ˆ =ε ), but an additional outer
feedback loop can further reduce the influence of the
partial compliance even without prediction. The
robustness of the various strategies is also
investigated under scenarios 2 and 3. Figure 11
shows that the PI-strategy is littl e sensitive to the OD
and demand variations, while the open-loop iterative
strategy is strongly sensitive to the same disturbances
(Figure 12). It is ill ustrated in Figure 13 that the PF-
strategy is hardly sensitive to the same disturbances.
Finally, figure 14 compares the performances of the
PI and PF strategies under the hybrid scenario.

The disbenefit values in Table 1 are consistent with
the simulation results shown in the above figures. For
example, the three disbenefit values (up to down) for
the PF-strategy under scenario 1 with 5.0=ε
correspond to the three cases mentioned above. Note
that with rough compliance predictions, the routing
performance is worse than that of PI-strategy.
Similarly, the introduction of the outer feedback loop
improves the routing performance with respect to the
OD variation. These results indicate that the outer
feedback loop is valuable for the PF strategy to deal
with unpredicted external disturbances effectively.

5. CONCLUSIONS

A predictive feedback routing strategy for freeway
networks is compared with the feedback and iterative
routing strategies. The simulation investigations
provide evidence for the following statements:
• The predictive feedback strategy works nearly as

perfectly as the iterative strategy in establishing
the predictive DUE condition in the case of
perfect model match.

• The predictive feedback strategy considers the
real-time information (transfer of the network
state to the predictor) and works efficiently with
moderate computational effort even for a network
with long links.

• Hence, the predictive feedback strategy works in
a rolli ng-horizon-like manner, but no
optimization problem needs to be solved in real-
time.

• With the aid of an additional outer-feedback loop,
the negative impact of the model mismatch can be
efficiently rejected.
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Figure 4  Routing results under normal scenario.
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Figure 5  Routing results under incident scenario.
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Figure 6  PI-controller under normal scenario:
                 control intervals.
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Table 1  Disbenefit values for various strategies.
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Figure 1  Predictive feedback routing control structure.

Figure 3  Demands for test network.
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Figure 2  Test network.



Figure 7  PF-controller under normal scenario:
                 control intervals.
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Figure 8  PI-strategy under normal scenario:
                 compliance rates.
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Figure 9  Iterative strategy under normal scenario:
                  compliance rates.
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Figure 10  PF-strategy under normal scenario:
                   compliance rates.
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Figure 11  PI-strategy under normal  scenario:
                       robustness.
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Figure 12  Iterative strategy under normal scenario:
                   robustness.
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Figure 14  Routing results under hybrid scenario.
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Figure 13  PF-strategy under normal  scenario:
                    robustness.
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