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Abstract: This work considers non-linear differential algebraic equation (DAE) sys-
tems whose state space depends on the manipulated inputs. An ODE representation
of such systems cannot be derived independently of the controller design. An output
feedback compensator is derived, which results in a modified DAE system whose
state space does not depend on the new inputs and can be used for output feedback
controller synthesis. Its application is illustrated in the context of control of a high-

purity distillation column.
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1. INTRODUCTION

Differential-algebraic-equation (DAE) systems arise

naturally as dynamic models of a wide range of en-
gineering applications (Newcomb, 1981; McClam-
roch, 1986; Muller, 1997; Kumar and Daoutidis,
19994). It is by now well-established that DAEs
behave fundamentally differently from ODEs. The
notion of index (Brenan et al., 1996) provides a
measure of that difference: a distinguishing fea-
ture of high-index DAEs is the presence of un-
derlying constraints that restrict the solution to
a lower dimensional space and require the speci-
fication of initial conditions on this space to ob-
tain smooth solutions. The possible dependence of
this state-space on forcing inputs poses additional
conceptual and technical problems when these in-
puts are viewed as manipulated inputs for control
purposes. Motivated by the above, the numerical
analysis (Brenan et al., 1996) and control of linear
(Campbell, 1982; Lewis, 1986; Dai, 1989; Rhem
and Allgower, 2001) and non-linear (McClamroch,
1990; Kumar and Daoutidis, 1999a) DAEs have
attracted a lot of attention.

1 Partially supported by the National Science Foundation

The state feedback control of a broad class of non-
linear DAEs has been addressed in (Kumar and
Daoutidis, 1999a) on the basis of an equivalent
ODE description (state-space realization) of the
DAE system if the underlying state space does not
depend on the manipulated inputs (such systems
have been termed regular), whereas if it does (such
systems have been termed non-regular), this step
is preceded by a state feedback modification to
make the underlying state space independent of
the inputs. In the present work, we lay the foun-
dation for addressing the output feedback control
of non-linear DAE systems. In the case of regular
systems, this problem can be addressed on the
basis of an equivalent ODE description, similar to
the state feedback problem. However, in the case
of non-regular systems, this approach necessitates
the derivation of an output feedback compensator
which results in a regular DAE system, suitable
for the derivation of an underlying ODE system
which can be used as the basis for output feedback
controller synthesis. In what follows, we address
the derivation of such a regularizing compensator
for a broad class of non-linear DAEs that arise
in practice, and we illustrate its application in
the context of a two-point control problem in a



high-purity distillation column with large internal
flowrates.

2. PRELIMINARIES

We consider non-linear DAE systems that have
the following semi-explicit description:

& = f(z) +b(x)z + g(x)u

0 = k(z) +l(z)z + c(z)u (1)

y = Hx
where x € X C IR™ is the vector of differential
variables, z € Z C IRP is the vector of algebraic
variables (X, Z are open sets of dimensions n,p,
respectively), u € IR™ is the vector of manipu-
lated inputs, f(z), k(x) are analytic vector fields of
dimensions n, p, respectively, b(z), g(x),l(z), c(x)
are smooth matrices of appropriate dimensions
and H € IR™*" is a constant matrix. Given
that typically the controlled outputs y are sub-
sets of the state variables x and for simplicity
of the subsequent development, we assume that
y; = x;, for 1 < 4 < m. We assume that the
system is high-index (i.e., rank[l(z)]= p; < p) and
rank[l(z) c(z)]= m1 < p, with m; > p;. The goal
is to design a feedback compensator using only
the measurements of the outputs y to obtain a
modified DAE system for which the constraints
are independent of the new inputs.

In (Kumar and Daoutidis, 1999a), an algorithm
was described which aims at increasing the rank
of the coefficient matrix for z, I(z), without in-
troducing derivatives of the inputs w. It involves,
in each iteration, row operations on the algebraic
equations to identify the underlying constraints
on z, of which a minimal number involve the
inputs u. The constraints involving the inputs u
are retained, while those that are independent
of u are differentiated to obtain the algebraic
equations for the succeeding iteration. For regular
systems, the procedure converges with a final set
of algebraic equations that can be solved for z in
terms of z and u. On the other hand, for non-
regular systems, the procedure converges with a
final set of algebraic equations that is still singular
with respect to z, i.e. it cannot be solved for z,
but also explicitly identifies those constraints in z
which involve v in a non-singular fashion.

When applied to the system of the form in Eq.1,
the algorithm, after s iterations, yields the follow-
ing DAE system:

& = f(z) + b(z)z + g(z)u

- i3]+ [5]+[d)e
0w

where [(z) is a full row rank pyy; X p matrix
(we have ps11 < p because the DAE system is

assumed to be non-regular), é(x) is a full row rank
(p—ps+1) Xm matrix, and k(z) = 0 are constraints
among the differential variables x identified by the
algorithm. The DAE system in Eq.2 is equivalent
to the original DAE system in Eq.1 in the sense
that for consistent initial conditions (z(0),z(0))
and smooth inputs u(t), both systems have the
same smooth solution (z(t), z(t)).

3. DESIGN OF THE OUTPUT FEEDBACK
COMPENSATOR

For the new DAE system in Eq.2, an output feed-
back compensator will now be designed to modify
the constraints k(z) + é(z)u = 0 that involve
the inputs u, with the objective of obtaining a
modified DAE with new inputs v that do not
appear in any of the underlying constraints.

Given that the constraints k(z) + é(z)u = 0 have
to be differentiated at least once to obtain a set
of algebraic equations solvable in z, the algebraic
variables z(t) are functions of the differential
variables z(t), the inputs u(¢) and at least one
of their derivatives. Thus, any causal feedback
law for u must be independent of the algebraic
variables z. Moreover, a static output feedback
compensator of the form

u=F(y,v)

will not achieve the desired objective, since the
resulting feedback modified constraints would still
involve the new inputs v. These reasons motivate
the choice of a dynamic output feedback compen-
sator.

Given that é(z) is a full row rank matrix, without
loss of generality, the manipulated inputs u can
be arranged in such a way that:

&(x) = [é1() éx()] 3)
where ¢ (z) € R(P~Ps+1)X(P=Ps+1) ig non-singular
and éz(m) [ R(p_ps+1)x(m_(p_ps+1))_

We will consider a driftless dynamic compensator
of the general form:

u';zvl

v — [F(g)y] . [G(g)w] + B @
where w € IR™ is the vector of the compensator
states, v € IR™ is the vector of new inputs,
F(y),G(y) and B(y) are matrices of dimensions
(p—Ps+1) Xm, (p—ps+1) X 1, m X M respectively.
The compensator in Eq. 4 will be designed to
modify the constraints 0 = k(z) + é(x)u such
that

(7) the resulting constraints are independent of
the inputs v, and

(i7) differentiating these constraints once, the re-
sulting algebraic equations are solvable in z.



The requirement in (i) is necessary to obtain a
regular system. The requirement in (i7) implies
that the feedback modified DAE has an index
g = 2, and thus it is solvable and no additional
underlying constraints are present.

3.1 Requirement (i)

Let’s focus on the requirement that the new
constraints are to be independent of the new
inputs v. Clearly, for this to happen, we must
have:

&(z)By) =0 (5)
Note that this can be easily satisfied if any of the
following holds:

* we allow for measurements of all states,
* ¢(x) is afunction of only the output variables,
* ¢(x) is a constant matrix.

Then, we can directly construct 5 to be in the null
space of ¢.

In the case where none of the above holds, the
following proposition provides conditions under
which requirement (i) is possible with output
feedback.

Proposition: Consider a DAE system of the
form in Eq. 1 for which the algorithm in (Kumar
and Daoutidis, 1999a) yields the equivalent DAE
system in FEq.2, subject to the dynamic compen-
sator of Eq. 4. Consider also a partition of B as
[B1 ()™ Ba(y) ™1™ where Bi(y) € RP-Pe+1)Xm gng
Ba(y) € RM—(p=pst1))xm gnd o decomposition
of —[¢1(x)]"té2(x) as M(x) + P(y), where P is a
matriz imwvolving only the output variables y. The
resulting constraints are independent of the new
inputs v if and only if there exists B2(y) such that:

M(z)B2(y) =0 (6)

Proof: Let’s assume that there exists 82 such that
Eq.6 holds. Then the matrix 8 = [81(y)T B2(y)¥]¥
where 51 (y) = P(y)B2(y), satisfies Eq. 5, which
proves the sufficiency.

For Eq. 5 to hold, we need:

Bi(y) = [M(z) + P(y)]B2(y)

Let’s consider two specific representations of the
state vector denoted by z' and z? such that z7 =

zy, i=1,...,m,but z? Az}, i=m+1,...,n.
Then:
Bi(Hz') = p1(Ha?) = pi(a1,...,x,
ﬂZ(H'Z-l) =182(Hx2) = 182("5}7 7$1

which implies:

?

M (") Ba(Hz') = M (2*)Bo(Hz?) = 0

i.e., B2(H) is such that M (z)B2(Hz) = 0, which
completes the proof.

3.2 Requirement (i7)

Once the requirement (i) is satisfied, the new
constraints which do not involve z are:

~

k(z) + & (@)[F(y)y + Gly)w] =0  (7)
or equivalently,
[61(2)] " k(z) + F(y)y + Gly)w =0  (8)

For simplicity of notation, let’s denote [é; (z)] ' k(x)
by k(z).
We now make the following observations:

o Let

I(z)

L k(z

rank [
=p

)=

where py11 < p* < p and

~ ~

Lb1E1 (:E) e pr kl (.’E)

ébE(CL’) = . .

Lbléq(x) . prEq(;c)
where Lbjﬁi(:v) denotes the standard Lie
derivative, b; is the jth column of b(z) and
g = p — Ps+1- Then, without loss of gener-

ality, the vector k(z) can be rearranged as
-1

A 732, 17 ~1

k(z) = [E ()" k (z) ] where k£ (z) and
E2 (z) are vectors of dimensions p* — p,,1 and
p — p* respectively, such that

~1
rankL,k' (z) = p° — poss

o If moreover

then rankHb(xz) = p—p*. The matrix Hb(x)
corresponds to the m first rows of the matrix
b(x), so that the previous rank condition
implies that, among the m first rows of b(x),
p — p* rows are linearly independent. Thus,
there exists a matrix I' € IRP—P)X™ with
full row rank that selects the p — p* linearly
independent rows of Hb(x) such that:

rank

9)



The following theorem states the result on the de-
sign of the dynamic output feedback compensator:

Theorem: Consider a DAFE system of the form
in Eq. 1 with the equivalent DAE system of
Eq. 2 where the condition of the proposition holds.
Then, the system in Eq. 2 can be modified through
a dynamic output feedback compensator of the
form in Eq.4 to obtain an index-two regular sys-
tem, if and only if:

I(z) X
rank éb[[él(x)]_lk(x)] =p (10)
Hb(x)

If this condition is satisfied, then the dynamic
output feedback compensator:

12 _ TF(g)y] + [%’] +awe
where
F= [19] , (12)

B(y) is such that ¢(x)B(y) = 0, and T is as
chosen in Eq. 9, yields an index-two modified DAE
system.

Proof: The differentiation with respect to time
of the constraints in Eq. 8 yields new constraints
for which the resulting matrix coefficient for z has
the form:

Iy, O 0 I(z)
OF 0G L k(x)
I 9w+ F| | 2E
O orens B0+ 3 | | Hbw)
where
3F1 k
oF k=1
=
oy .
< 6Fp_ps+17k
Z T
L k=1 y |
with
OF; ) [aFi,k OF; ]
9y ~ | Oy T Oym

and, F; ; is the (i, 7)th element of F. To have an
index-2 DAE system, the matrix coefficient for z
has to be invertible. Given that the first matrix
in the above product has full row rank, it follows
that the condition of Eq. 10 should hold.

If we assume that the condition of Eq. 10 is
fulfilled, the direct substitution of the feedback
law of Eq. 11 into the DAE system of Eq. 2 results
in the following algebraic equations:

0= [HAT 4[]+ [aEw]
+atw]+ LEomm

Given that the matrix B(y) is constructed to
satisfy requirement (¢), the constraints that do not
involve the new inputs v take the form:

0=k(z) + & (2)[F(y)y + w]

or, equivalently,

0=[¢1(2)] 'k(z) + Fy)y + w

Given the definition of F'(y), those constraints are:

0 = [é1 (2)] h(z) + [Foy] +w

Differentiating these constraints with respect to
time once yields a new set of algebraic equations
in which the matrix coefficient for the algebraic
variables z is:

I(x)
Lk (@)
L, (2) + THb(a)

Clearly, the algebraic equation is solvable for z
given that the previous matrix is non-singular by
construction (see Eq. 10), which completes the
proof.

Corollary: Consider a DAE system of the form
in Eq. 1 with the equivalent DAE system of Eq. 2
where the condition of the proposition holds. As-
suming that:

I(z) ]
rank N 13 = 13
[g,,[[q(w)] ) =7 09
the following output feedback compensator:
w = U1
(14)

u = [16]] + B(y)v

where B(y) is such that ¢(x)B(y) = 0 yields an
index-two modified DAE system.

Proof: When the condition of Eq. 13 is satisfied,
I" can be chosen as I' = 0, so that ' = 0 in Eq. 11,
yielding the compensator of Eq. 14.

Remark: Note that, if we allow for measurements
of all the states (i.e. H is the identity matrix),
then, the condition of the proposition is obviously
satisfied and the condition of the theorem is also
satisfied since we always have:

]

(see (Kumar and Daoutidis, 1999a), pp:59 — 62).



Once the non-regular DAE system is modified
with the output feedback compensator of Eq. 11,
the resulting regular index-two DAE system can
be used directly for the derivation of a state-
space realization and the formulation of an output
feedback controller synthesis problem on the basis
of this realization (see e.g. (Kumar and Daoutidis,
1999a)).

4. EXAMPLE

In a network of processes (reactors, separation
systems) or a single staged process, where the in-
dividual units are connected with recycle streams,
large recycle flowrates typically induce a two time
scale behavior: the dynamics of the individual
units evolve in a fast time scale while the dynam-
ics of the overall network or process evolve in a
slow time scale. This slow dynamics is typically
described by a high-index DAE which can be non-
regular depending on the choice of manipulated
inputs (Kumar and Daoutidis, 2001).

Let’s consider a distillation column with N trays
(numbered from top to bottom), to which a satu-
rated liquid containing a mixture of three compo-
nents with mole fractions x;¢,z2¢ of components
1 and 2 respectively, is fed at (molar) flowrate
Fy on tray Ny. The heavy component 3 is the
desired product and is removed at the bottom
from the reboiler at a flowrate B, while the lighter
components 1 and 2 are removed at the top from
the condenser at a flowrate D. In this column, a
large vapor boilup Vp and liquid recycle R are
used compared to the feed, distillate and bottom
product flowrates, to attain a high purity of the
desired component 3 in the bottom product.

The presence of large vapor boilup Vg and lig-
uid recycle R, and hence, large internal liquid
and vapor flowrates in the column, compared to
the inlet and outlet flowrates from the column,
induces a time-scale separation in the column
dynamics with the dynamics of individual stages
evolving in a fast time scale, and the dynamics of
the overall column in a slow time scale (Kumar
and Daoutidis, 19995b). Note that a large liquid
recycle R implies an equally large vapor boilup
VB at the nominal steady state. On the other
hand, the feed flowrate Fp, the distillate flowrate
D and the bottom product flowrate B are of the
same order magnitude. Thus, defining the sin-
gular perturbation parameter € = Dyom/Ruom,
and K1 = VBnom/Rnom = O(1), where the sub-
script nom refers to nominal steady state values
and O(.) is the standard order of magnitude no-
tation, the terms involving the large parameter
(1/€) can be isolated in the model. Then, the
process model, under standard modeling assump-

tions, takes the following general form (Kumar
and Daoutidis, 1999b):

i = [@)+ g @ + Tg @ (15)

where z is the vector of state variables (composi-
tions and holdups in each stage), u®* = [D B|T €
IR? is the vector of manipulated inputs corre-
sponding to small flowrates and u! = [R Vg]T €
IR? is the vector of manipulated inputs corre-
sponding to large flowrates where R = R/Rpom
and VB = VB/VBnom-

The control of a two-time-scale system such as
the one in Eq. 15 is naturally addressed through
the derivation of separate controllers in the fast
and the slow time scales. In the fast time scale
(7 = t/e), in the limit € — 0, the inputs «® have
no effect on the fast dynamics; only the outputs !
can be used for control. In particular, the liquid
holdups in the condenser and the reboiler (M¢
and Mpg) behave like integrators and need to be
stabilized, which is easily achieved by using simple
proportional controllers:

R: - KCI(MCTLOM - MC)

- Kc2(MRnom - MR)

1
[EE Y

In the slow time scale t, the dynamics are
obtained from Eq. 15 in the limit ¢ — 0 and take
the form:

z = f(z) +b(x)z + ¢°(x)u’

0= g’(w)ul (16)

where 0 = g'(x)u! are 2N +3 linearly independent
constraints, and z = lim._og (z)u! € R2V*3 is
the vector of the linearly independent algebraic
variables.

In this slow-time scale, there are two manipulated
inputs D and B that affect the slow dynamics. At
this time scale, the total holdup (or, equivalently,
one of Mg or M¢) also needs to be stabilized as it
is not affected by the large flowrates (Kumar and
Daoutidis, 1999b). The specification of one more
output, e.g. the top or the bottom composition,
leads to a well-defined control configuration and
the resulting DAE system is regular. However,
in order to achieve control of both the top and
bottom compositions, we need an additional ma-
nipulated input. A natural approach to this end
is to treat the setpoints for the condenser/reboiler
holdups used in the fast proportional control as
additional manipulated input variables, leading
to a cascaded control configuration. In this case,
the DAE system that describes the slow dynamics
of the column is non-regular, since the algebraic
constraints explicitly involve the setpoints for the
reboiler /condenser holdups, which are manipu-
lated inputs. Considering Mo pom as an additional
manipulated input, and Mc, 23 B,23,p as the



controlled outputs where 3 g, 23 p are the mole
fraction of component 3 in the reboiler and the
condenser respectively, the DAE system of Eq. 16
can be rewritten as:

& f(gcl) + b(z)z ?Ll g(z)u
0= ] < [5]

yi =i, 1<i<3

where u = [Mcnom D B]T is the vector of
manipulated inputs,
e =[K, 00]

]_cl(x) = [_1 - KCIMC - EIKC2MR’FLOM
+ K;l(]. + KCQMR)]

and the 2N + 2 linearly independent constraints
that do not involve the inputs are:

H1‘ZB(:U3,1 - ~73'3,D)
- k1VB(y11 — 21,D)
k1VBW1,i41 — Y1i + T1im1 — T1,0)

E'(z) =
k1VB(Y3,i+1 — Y3,i + T3,i—1 — T3,5)

where 1 < ¢ < N, z;;,23,; are the liquid mole
fractions of 1 and 3 in tray ¢, and y1,;,y3,; are the
vapor mole fractions in tray i. The differentiation
of the constraints k' (z) = 0 with respect to time
yields K4 = 0 where K is a (2N +2) x (2N +6)
full row rank matrix and leads to the following
DAE system:

z = f(z) + b(z)z + g(x)u
R )
0 = ky(z)

yi =z, 1<i<3

which is in the form of Eq. 2.

Notice that since é(z) = &' is a constant, 8 can

be easily constructed to be in the null space of
000
101
011
that does not depend on y. It can also be verified
(details are omitted due to lack of space) that:

é(x). Let’s consider the following f =

l_(Am) Kb(z)
rank ébﬁ(x) = rank éb[kl (z)/K]
Hb(z) Hb(z)

= rank [ L []}If(lg)u()g;)f(cl]]

=2N+3
so that the condition of the corollary is satisfied

too. Thus, we obtain the following dynamic com-
pensator:

which achieves the desired regularization. In this
special case, the compensator corresponds to
adding an integrator to the channel of the manip-
ulated input Mcyom- The resulting regular DAE
system can be used as the basis for designing
a non-linear output feedback controller, which,
coupled with the proportional controllers in the
condenser and reboiler, will comprise the overall
control scheme for the column.
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