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Abstract: This paper studies the existence of limit cycles in a control system which contains
nonlinearities and parametric uncertainties. The existence of limit cycles in a control system with a
separable nonlinearity can be predicted using the describing function. In this paper, some of the
well-known results developed in the area of parametric robust control are used together with the
describing function method to analyze the stability problem of uncertain nonlinear systems. Based
on the segment lemma, a stability result for a control system with an uncertain nonlinear element
and a fixed linear element is first derived. Then, a polynomial method and a graphical method are
proposed to determine how much one can perturb the coefficients of the linear element without
causing the nonlinear system to have a limit cycle. Examples are given to illustrate the method
presented. Copyright © 2002 IFAC
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1. INTRODUCTION

The characteristic features of linear systems such as
the proportionality of cause and effect and the
principle of superposition no longer hold for
nonlinear systems. The proportionality of cause and
effect is the basis of harmonic analysis, in which it is
known that if the input signal of a linear system is a
sinusoidal signal, the output is a sinusoidal signal of
different phase and amplitude, but of the same
frequency. However, in nonlinear systems, the
frequencies present in the output may not be those of
the input. There are some phenomena such as
periodic motion or the occurrence of limit cycles,
chaos, multiple modes of behaviours etc. which can
only take place in nonlinear systems.

Analysis and design of nonlinear systems or
procedures for finding the solutions of problems
involving nonlinear systems, in general, are
extremely complicated. Because the analysis tools for
nonlinear problems involve more advanced

mathematics, one often finds it necessary to use
equivalent linearization techniques and to solve a
resulting linearized problem. The describing function
method is one of the popular equivalent linearization
methods (Atherton, 1982). Describing Function
based methods are used in nonlinear systems for
assessing the system stability where instability is
envisaged in the form of limit cycles. However, the
classical describing function method was developed
for fixed nominal systems and in general is
inapplicable when uncertain parameters are present.
Within the context of control system with uncertain
parameters, the describing function was studied for
continuous-time systems in (Ferreres and Fromion,
1998; Fadali and Chachavalvoong, 1995; Impram
and Munro, 1998) and for discrete-time systems in
(Tan and Atherton, 1999) by using a µ -synthesis

framework, the Kharitonov theorem and the mapping
theorem. In all of these papers, it is assumed that
both the nonlinear and linear elements of the
nonlinear system shown in Figure 1 involve
parametric uncertainty. However, since the
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describing function representation of a nonlinear
element is an approximate procedure, it is more
realistic to represent a nonlinear element by uncertain
parameters and take the linear part as a fixed transfer
function. In this paper, firstly, the stability analysis of
control systems with separable nonlinearity is
investigated. A stability result is given using the
segment lemma (Bhattacharyya, et al., 1995)
assuming that the describing function which
represents the nonlinear element is uncertain and the
coefficients of the linear element are fixed. Then, two
methods are given to determine the maximum value
of the perturbation of the coefficients of the linear
element while preserving stability.

The paper is organized as follows: In Section 2, some
results from parametric robust control are reviewed.
The classical describing function method is
summarized in Section 3. The stability analysis of
control systems with an uncertain describing function
and a fixed linear element is investigated in Section
4. Section 5 gives a polynomial method and a
graphical method for stability margin computation.
Section 6 includes concluding remarks.

Figure 1: Block diagram of a nonlinear system with
separable nonlinearity

2. SOME RESULTS FROM PARAMETRIC
ROBUST CONTROL

Most of the research results related to the robustness
analysis of systems with parametric perturbations
have taken place since the publication of the
Kharitonov theorem (Kharitonov, 1979). The
Kharitonov theorem is an extension of the Routh
stability criterion to interval polynomials. An interval
polynomial is a polynomial where each coefficient
can vary in a prescribed interval. For example,
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is an interval polynomial where the uncertainty box

is },.....,2,1,0],,[:{ niqqqqQ iii =∈= . The

Kharitonov theorem states that an interval
polynomial of the form of Eq. (1) is Hurwitz stable if
and only if the four Kharitonov polynomials are
Hurwitz stable.

The objective of this section is to present some basic
results in the area of parametric robust control which
are based on the Kharitonov theorem. A complete

and very up-to date investigations of this area of
research can be found in the books (Bhattacharyya, et
al., 1995; Barmish, 1994; Ackermann, 1993;
Djaferis, 1995). Consider a unity feedback system
with
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where ],[ iii rrr ∈ , i=0,1,2,....,m and ],[ iii qqq ∈ ,

i=0,1,2,....n. The numerator, )(sN c , and the

denominator, )(sDc , are fixed polynomials in s. Let

the Kharitonov polynomials associated with ),( rsN

and ),( qsD  be )(1 sN , )(2 sN , )(3 sN , )(4 sN  and

)(1 sD , )(2 sD , )(3 sD  and )(4 sD , respectively. By

taking all combinations of the )(sN i  and )(sD j  for

4,3,2,1, =ji , one obtains the sixteen Kharitonov

plants family as
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The Kharitonov segments for the numerator and
denominator of ),,( rqsG  can be written as

)()1()( sNsN ji λλ −+ , )()1()( sDsD ji λλ −+        (5)

where ]1,0[∈λ  and )}4,3(),4,2(),3,1(),2,1{(),( ∈ji .

And the following 32 subsets of the family of interval
plants ),,( rqsG  can be obtained by using the

Kharitonov segments. These subsets are

)(

)()1()(

)()1()(

)(
)(

sD

sNsN

sDsD

sN
sG

i

kj

kj

i
E

λλ
λλ

−+
∪

−+
=

                              (6)

where ]1,0[∈λ , 4,3,2,1=i  and

)}4,3(),4,2(),3,1(),2,1{(),( ∈kj . The closed loop

characteristic equation of the system is
),()(),()()( rsNsNqsDsDs cc +=δ . Then the closed

loop system is stable for all ),,()( rqsGsC  if and

only if it is stable for all )()( sGsC E  (Bhattacharyya,

et al., 1995). If the controller is a proper first order
controller such as )()()( bsasKsC ++=  then

),,()( rqsGsC  is stable if  )()( sGsC K is stable

(Barmish, 1994). It was shown that the outer
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boundary of the Nyquist envelope of a stable strictly
proper interval plant is covered by the Nyquist plots
of the sixteen Kharitonov plants (Hollot and Tempo,
1994). The whole boundary of the Nyquist and
Nichols envelopes of ),,( rqsG  and ),,()( rqsGsC

are generated from the boundary of )(sGE  and

)()( sGsC E and the Bode envelope can be obtained

from the rectangular value sets of the numerator and
the denominator of the interval plant.

3. DESCRIBING FUNCTION ANALYSIS

The describing function of a nonlinear element can
be defined as the ratio of the fundamental component
of the output to the magnitude of an applied
sinusoidal input. Consider an input )sin()( tAtx ω=
to the nonlinear element, the output can be expressed
in a Fourier series as follows:
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For an odd nonlinearity 0a  is zero. Using the

fundamental component,
)sin()cos()( 111 tbtaty ωω += , of )(ty , the

nonlinearity is represented with the describing
function as
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Now, the characteristic equation of the system shown
in Figure 1 can be written as

0)(),(1 =+ sGAN ω         (11)

Generally, in practice, ),( ωAN does not depend on

ω . Therefore, a graphical method which is based on
the intersections of )( ωjG  and )(/1 AN−  in the

complex plane can be used to solve Eq. (11). From
Eq. (11), the following equation can be obtained
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Thus, the possible ),( ωA  solutions can be

investigated by plotting )( ωjG  and )(1 AN−
together. If intersections exist, the system may have
limit cycles at ),( ωA  corresponding to the

intersection points. The stability of the limit cycle
can be assessed by applying the Nyquist criterion. In
this case, the single )0,1(−  critical point is replaced

by a locus of critical points, which are given by
)(1 AN− .

Since the describing function technique is an
approximate method, it may give inaccurate results.
The accuracy of the describing function method
depends on two factors which are the distortion
produced by the nonlinearity assuming a sinusoidal
input and the frequency characteristic of the linear
element. Therefore, the results which are produced
by the describing function method can be relied upon
if the linear subsystem is sufficiently low pass.

4. NONLINEAR UNCERTAIN SYSTEMS

In this section, it is assumed that the nonlinear
system of Figure 1 has a fixed linear transfer function
and an uncertain describing function for the nonlinear
element. Using the segment lemma, an exact stability
result is presented. As was mentioned before, within
the context of uncertain systems, the describing
function analysis of uncertain systems has been
investigated in (Ferreres and Fromion, 1998; Fadali
and Chachavalvoong, 1995; Impram and Munro,
1998; Tan and Atherton, 1999). However, it is
interesting to point out that in all of these papers, it
has been assumed that both linear and nonlinear
elements include parametric uncertainty. The
stability analysis of such a system is generally
difficult due to multilinear uncertainty structure of
the resultant characteristic equation. Converting a
multilinear uncertainty structure to an interval
polynomial structure gives conservative results.

Since Eq. (10) is a scalar quantity, an uncertain
describing function can be written as

],[],[),( iirr kkjkkkAN +=         (13)

For a memoryless nonlinearity, the interval
describing function is

],[),( rr kkkAN =         (14)

Assume that the linear part of the nonlinear system of
Figure 1 is a fixed transfer function of the form
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Then, from Eq. (11), the characteristic polynomial of
the system

0)(),()()(),(1 =+=+ sNkANsDsGkAN         (16)



should be Hurwitz stable for the stability of the
nonlinear system of the form given Figure 1. Eq. (16)
can be represented by a segment of polynomials
which has the following end point polynomials:

)()()(1 sNksDsv r+=

)()()(2 sNksDsv r+=         (17)

Thus, the segment which represents Eq. (16) can be
written as

)()()1( 21 svsv λλ +−         (18)

where ]1,0[∈λ . Then, from the segment lemma, the

stability of nonlinear system can be checked as
follows: Let )(1 sv  and )(2 sv  be stable polynomials.

Then the line segment  )()()1( 21 svsv λλ +−  is

Hurwitz stable for all ]1,0[∈λ  if and only if there

exists no real 0>ω  such that all of the following
three conditions are met

0)()()()( 1221 =− ωωωω oeoe vvvv

0)()( 21 ≤ωω ee vv

0)()( 21 ≤ωω oo vv         (19)

where ( )(1 ωev , )(1 ωov ) and ( )(2 ωev , )(2 ωov ) are the

even and odd parts of )(1 sv  and )(2 sv , respectively.

Example 1

Consider the nonlinear system of Figure 1 and
assume that the nonlinearity is as shown in Figure 2.
Its describing function is
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],[)( 12 kkAN ∈  and if 12 kk >  then ],[)( 21 kkAN ∈ .

Figure 2: Characteristic of saturation nonlinearity

Now, assume that the nonlinearity of Figure 1 is a
saturation with 21 =k  , 02 =k  and 1=δ  and the

transfer function of the linear part is given by
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where the nominal values of the parameters are:
10 =a , 30 =b , 600 =c , 10 =d , 30 =e , 350 =f ,

400 =g  and 500 =h . Hence the nominal transfer

function of the linear element is
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From Eq. (20), the uncertain describing function is
]2,0[),( ∈kAN . Then the characteristic equation of

the system can be written as
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From Eq. (17),

5040353)( 234
1 ++++= sssssv

17046373)( 234
2 ++++= sssssv         (24)

Thus, the stability of the nonlinear system is
equivalent to the stability of the line segment

)()()1( 21 svsv λλ +−  where ]1,0[∈λ . To apply the

segment lemma it is necessary to find the positive
real roots of the polynomial

04500190)()()()( 2
1221 =−=− ωωωωω oeoe vvvv

There is one positive real root which is 8666.4=ω .
However, for 8666.4=ω  it can be seen that

01017.3)()( 4
21 >= xvv ee ωω

and

088.777)()( 21 >=ωω oo vv .

Therefore, the nonlinear system is stable. The
frequency response of )( ωjG  and describing

function ),(1 kAN−  are shown in Figure 3. From

Figure 3, it is seen that the describing function plot
does not intersect with )( ωjG . Hence, the system is

asymptotically stable as concluded using the segment
lemma.
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Figure 3: Graphical prediction of limit cycle

5. STABILITY MARGIN COMPUTATION

A main problems in robustness of control systems is
to find the maximum allowable perturbation bounds
of parameters of a system while preserving stabil ity.
The interest in this area has greatly increased since
the publication of the Kharitonov theorem. Although
the stabil ity of an interval system can be checked by
Kharitonov’s test, there is no direct indication as to
what extent the bounds of parameters can be
increased before the system becomes unstable. In this
section, the answer of “how much can we perturb the
coeff icients of the linear subsystem of Figure 1 while
simultaneously preserving the stabil ity of the
nonlinear system?” or “how much can we perturb the
coeff icients of the linear subsystem of Figure 1
without forcing the nonlinear system to have a limit
cycle?” is given. Two approaches are presented. The
first one is based on the robust stabili ty of uncertain
polynomials and the next one is based on the Nyquist
envelope of interval transfer functions.

5.1 Polynomial Approach

Consider the nominal transfer function of the linear
part of Figure 1 as
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and assume that ],[),( rr kkkAN = . Then, the open

loop transfer function of the system is
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Assume that the nonlinear system with

],[),( rr kkkAN =  and )(sG  of Eq. (25) is Hurwitz

stable. Given any allowable variations in the
coeff icients 0>ε , Eq. (26) can be written with an
interval transfer function as
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where ],[ iii bbb ∈ , ε−= iri xkb , ε+= iri xkb ,

mi ,....,2,1,0= and ],[ iii aaa ∈ , ε−= ii ya ,

ε+= ii ya , ni ,....,2,1,0= . The closed loop

characteristic equation of the system is
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which is an interval polynomial. From the
Kharitonov theorem, assume that )(1 sδ , )(2 sδ ,

)(3 sδ  and )(4 sδ  are Kharitonov polynomials of Eq.

(28). Thus, for any 0>ε , if all these four
Kharitonov polynomials are Hurwitz stable then the
stabili ty of the perturbed system is guaranteed. If the
maximum perturbations of )(1 sδ , )(2 sδ , )(3 sδ  and

)(4 sδ  to retain stabili ty are respectively 1ε , 2ε , 3ε

and 4ε , then from

},,,min{ 4321max εεεεε =         (29)

the maximum allowable perturbation can be
determined.

5.2 Graphical Approach

Since the outer boundary of the Nyquist envelope of
a proper interval plant is covered by the Nyquist plots
of the sixteen Kharitonov plants, it is possible to find

maxε  graphically. For any variations in the

coeff icients of Eq. (25), say 0>ε , the interval plant
representations of Eq. (27) can be written. Then,
from the Nyquist plots of the Kharitonov plants, it
can be checked whether if there is any intersection
between ),(/1 kAN−  and the Nyquist plots of the

Kharitonov plants. If there is no any intersection then
increase the value of ε  and repeat the process until
there is intersection. The value of ε  for which the
Nyquist plots of the Kharitonov plants and

),(/1 kAN−  start to intersect is equal to maxε .

Example 2

Consider the nonlinear system given in Example 1
which has been shown not to possess a limit cycle. In
this example, it is aimed to find how much one can
perturb the parameters (a, b, c, d, e, f, g, h) of the
transfer function of the linear element of Eq. (22)
around their nominal values while preserving
stabili ty. Using the polynomial approach given
above, it was computed that the value of maxε  is

equal to 0.385. For this value of perturbation, the
Nyquist plots of the Kharitonov plants and



),(1 kAN−  are shown in Figure 4. From Figure 4, it

can be observed that the polynomial approach gives a
conservative result since ),(1 kAN−  does not touch

the Nyquist plots of the Kharitonov plants. The
conservative nature of the polynomial approach
comes from the fact that since the system has an
uncertain describing function, any parameter
variation in a linear element gives an open loop
transfer function with a multili near uncertainty
structure. However, the multil inear uncertainty
structure is converted to the interval uncertainty
structure via Eq. (27). On the other hand, the
graphical approach gives an exact result. Using the
graphical method, it was computed that maxε  is equal

to 0.42. Using this value, the Nyquist plots of the
Kharitonov plants and ),(1 kAN−  are shown in

Figure 5 where it can be seen that ),(1 kAN−
touches the Nyquist plots of the Kharitonov plants.
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Figure 4: The Nyquist plots of the Kharitonov plants
and –1/N(A,k) (polynomial approach)
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Figure 5: The Nyquist plots of the Kharitonov plants
and –1/N(A,k) (graphical approach)

6. CONCLUSION

In this paper, the describing function analysis of
nonlinear systems with parametric uncertainty has
been studied. It has been first shown that the
characteristic equation of a nonlinear system with a

fixed linear element and an uncertain describing
function is a line segment of a polynomial whose
stabili ty can be checked by the segment lemma.
Then, two methods have been presented for stabili ty
margin computation of nonlinear uncertain systems.
The first one is based on the robust stabil ity of
uncertain polynomials. The second method is a
graphical method which is based on the Nyquist
envelope of interval transfer functions.
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