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Abstract: Recent approaches for nonlinear and dynamic data reconciliation suffer
from inapplicability and infeasibility for large systems. Because these systems are
expressed by differential and algebraic equations, the complete problem definition
requires a considerable number of equations that need to be solved simultaneously
during the solution of the nonlinear programming problem. One way in avoiding this
is to use a commercial software package to model a process and to reduce the size of
the model by generating an input-output model from the simulation results. In this
research two different approaches are presented to describe dynamics of the system
and reduce the size of the model by model identification techniques.
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1. INTRODUCTION

Data reconciliation is one of the several data
analysis methods that utilize a process model
to provide more accurate estimates of measured
process variables. The majority of the research in
data reconciliation has been on the steady state
linear systems while most industrial systems are
nonlinear and dynamic.

Different approaches have been applied for the
extension of data reconciliation to nonlinear dy-
namic systems. One approach is the application of
successive linearization techniques which linearize
the nonlinear model about an operating point.
Another approach is the solution of the nonlinear
and dynamic data reconciliation problem using
Nonlinear Programming (NLP) techniques. The
nonlinear dynamic data reconciliation formulation
using first principles model and applying the lat-
ter approach was first developed by (Liebman et
al., 1992). This algorithm assumes the process
model represents the system accurately. A mov-

ing horizon approach can be utilized in order to
restrict the size of the problem, and collocation on
finite elements method can be applied to convert,
differentialalgebraic equation (DAE) system into
a set of algebraic equations (Biegler, 1984).

Liebman’s algorithm is not suitable for large sys-
tems such as first principles models. For a process
which has NS state variables and NI input vari-
ables with a history horizon of H and NC colloca-
tion points, it requires the solution of a problem
with NS x (NC' — 1) x H equations and NS x
(NC —1)x H+ N1 x H variables simultaneously.
Large computation time requirement and mod-
eling difficulties make on-line application of this
approach almost impossible for large processes.
Instead of using first principles, the process model
can be developed by simulation software. How-
ever, this involves interfacing the software with
a reliable optimization package, and reducing the
size of the problem by model reduction techniques.
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Fig. 1. Nonlinear Data Reconciliation Algorithm

The main objective of this paper is to develop a
computationally efficient and industrially feasible
approach for the use of commercial simulation
software as a modeling tool in data reconcilia-
tion. In order to achieve this goal an intermedi-
ate model identification step was added to the
algorithm as shown in Figure 1. A reduced model
was generated by applying input-output modeling
approaches to the simulation results at each data
reconciliation iteration. T'wo new approaches have
been developed to carry out data reconciliation
with dynamic simulation software. In the first
approach the dynamics of the system is repre-
sented by ordinary differential equations similar
to Liebman’s Nonlinear Dynamic Data Reconcili-
ation algorithm. A finite difference method is com-
bined with a model identification tool to generate
a simplified local model of the process. In the
second approach the dynamics of the process is
represented by recursive equations. This method
utilizes time series analysis generated by fitting a
time series model to simulation results. Different,
model identification tools can be used to fit the
data into either finite difference or time series
models.

This paper is organized as follows: First, the
nonlinear dynamic data reconciliation problem is
reviewed. Second, proposed approaches are in-
troduced and formulated. Next, these methods
are implemented in two example problems: The

first one is a continuous flow stirred tank reactor
(CSTR) system with a known model. The second
example is a depropanizer process modeled with
HYSYS® simulation package. Finally, the valid-
ity and the applicability of these approaches are
discussed.

2. NONLINEAR DYNAMIC DATA
RECONCILIATION OVERVIEW

The nonlinear dynamic data reconciliation prob-
lem was expressed as the least squares problem in
the following form by (Liebman et al., 1992):
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where t is the current time, y is a vector of
estimates of the measurements, elements of y are
the measurements, V is the variance-covariance
matrix, f is a vector of differential equation con-
straints, h is a vector of equality constraints, and
the g is a vector of inequality constraints.

In order to restrict the size of the problem the
moving horizon approach can be applied over a
predefined history horizon. In this formulation the
objective function is expressed by the following
equation:
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where H is the history horizon or size of the
history window.

3. SIMULATION SOFTWARE AND MODEL
REDUCTION

One way of using simulation software in data
reconciliation calculations is the application of
a simultaneous solution/optimization technique
(Bequette, 1991). This requires simulation of the
model at every line search step of the optimiza-
tion. This approach will not work with simula-
tion software because the whole model must be
simulated for the period of history horizon at
every iteration of line search during optimization.
The proposed approach in this paper is the use
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of model identification techniques which treats
the process model as a black box model. Before
the optimization step of the data reconciliation
algorithm, the process model is simulated and a
training set is created from the simulation results.
Then, the dynamic model is expressed by ordinary
differential equations (ODE) generated by a finite
difference method, or as a recursive algorithm
such as Autoregressive Time Series model. Next,
model parameters are evaluated using a paramet-
ric or a non-parametric model identification tech-
nique. These methods are illustrated by Figure
2 and explained in preceeding sections in more
detail.

The choice of the model identification technique
to identify model parameters in the proposed
methods is important for the accuracy of the
data reconciliation. Parametric or non-parametric
modeling techniques can be used for this pur-
pose. An input-output model is identified from
the training data set. For the finite difference ap-
proach input, data is process variables and output
data is the corresponding first derivatives. For the
time series analysis approach, input data set is
past values of the process variables along history
horizon and output data is the current values.
The simplest approach is to fit a linear model to
data. However, for highly nonlinear systems more
sophisticated approaches such as Volterra Models,
Recurrent Neural Networks or Multivariate Adap-

tive Regression Splines methods can be applied
(Alici, 2001).

3.1 Finite Difference Approach

In the first approach the process simulation soft-
ware, which is treated as a black box model, is
simulated to generate a training data set and
then, a finite difference method is utilized to cal-
culate the first derivatives for each corresponding
variable at each sampling time. This creates a

table of variable values versus corresponding first
derivatives. Then, a parametric or nonparametric
model identification method is used to evaluate
model parameters. This generates a model that is
similar in form to 2. Finally, the problem is solved
as a traditional NLP problem:
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where H is the size of the history horizon, ¢ is
the current time, elements of y are estimates of
the measurements, elements of y are the measure-
ments, V is the variance-covariance matrix, f is
the approximate differential equation system, and
the g are the inequality constraints. All kinetic,
thermodynamic and physical properties of the
system are embedded in the dynamic simulator
in this representation.

3.2 Time Series Analysis

The second approach presented in this paper is
the expression of the system’s dynamic behavior
by atime series model This approach is especially
useful when there is a non-monotonic response in
the system as shown in Figures 3, or in the pres-
ence of process oscillations. These two situations
yield multiple first derivatives for some process
variables. In this case since the finite difference
approach uses the table of process variables ver-
sus first derivatives table, multiple values of first
derivatives result in a confusion during model
identification and inaccurate estimation of model
parameters.

time

Fig. 3. Multiple %% for a corresponding y value

Time series models allow filtering and smoothing
of process oscillations. When time series analysis
is used to identify the dynamic behavior of the
system, the constraint equations can be expressed
as an autoregressive model where the previous
values of all variables along the history horizon
are added into the model.
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The first constraint in Equation (7) replaces the
dynamic constraint (ODE) in Equation (5). This
equation can be converted into the residuals form
to express it as an equality constraint for the
solution of the NLP problem:

Y (te) = F(§F (tr-1) § (te—2) . (tr—3) - +) =0

(8)

In this equation f is the approximation to y ()
and evaluated from the previous values of y using
model identification tools.

4. RESULTS AND DISCUSSION

In order to validate these approaches proposed
algorithms are first applied to a Continuous Flow
Stirred Tank Reactor (CSTR) described by the
following equations (Liebman et al., 1992):
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where
k = koe_TA', an Arrhenius rate expression

Ao = concentration of the reactant in the feed
T, = temperature of the feed stream

A = concentration of the reactant in the tank
T = tank temperature

There are two state variables, tank concentration
and temperature, and two input variables, feed
concentration and the feed temperature. Physical
properties can be obtained from (Liebman et
al., 1992).

A step change was introduced to the system at
time=20 seconds by increasing the scaled feed
concentration from 6.5 to 7.5. The data reconcil-
iation problem was first solved by the traditional
NDDR method for a history horizon of 5. Next,
the same problem was solved using the proposed
finite difference method under the same condi-
tions. Finally, the time series analysis method
was applied to the same problem for a history
horizon of 5. Estimation errors standard deviation
reduction relative to measurement error standard

Variable NDDR FD TSA
A 76 62 47
T 80 54 53
To 66 44 50

Table 1. Standard Deviation Reduction
for CSTR Example. (FD is finite differ-

ence, TSA is time series analysis.)

deviation reductions are tabulated in Table 1 for
all cases mentioned above.

The proposed approaches generate results close to
the traditional NDDR approach under the same
conditions. A non-smooth response is observed for
the tank concentration (A4). However, since the
time steps are small enough, the finite difference
approach was capable of catching the dynamic
behavior. The time series approach produced less
accurate results for the same variable, since it
smoothed the data, losing some information on
the dynamic behavior. This can be avoided by
using a shorter history horizon for the time series
approach. Unlike the tank concentration, results
for the feed temperature are closer to the tradi-
tional NDDR approach because of the smoothing
property of the time series approach. Because of
the first order filter behavior of the data recon-
ciliation algorithm, step changes are not recog-
nized immediately. The algorithm behaves more
cautiously in case of a sudden change considering
it can be an outlier data.

FD and TSA approaches were also applied to
a more realistic depropanizer system as shown
in Figure 4 modeled in HYSYS (AEA, 1998).
The model is interfaced with the data reconcili-
ation program using Object Linking Embedding
(OLE). Eight variables were chosen to be recon-
ciled. Those variables are: Temp eratures of Feed
1, Feed 2, SepVap, LTSExit; molar flow rates
of SepVap, Sepliq, Towerlnlet; and vapor phase
fraction of LTSExit. Among these the first two
variables are input variables, and the rest are the
state variables.

Measurement data was generated using a Gaussian
noise generator, and reconciled using proposed
approaches. It is not possible to apply the tra-
ditional NDDR method in this case, since there is
not any explicit set of model equations. Four step
changes are made in the system. Two step changes
were introduced to the temperature of Feed 1 at
time=800 s and 3000 s by first increasing it from
15.55 C to 25.55 and then decreasing it back to
15.55 C. Two additional step changes were made
on the temperature of Feed 2 at time=2100 s and
3000 s by first increasing it from 15.55 C to 25.55
C and then decreasing it back to 15.55 C .
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The proposed approaches were applied to this de-
propanizer system. The standard deviation reduc-
tions were tabulated in Table 2 for each variable
for these two methods. In this table “” indicates
that since the dynamics of the process is fast at
each step change, the data reconciliation algo-
rithm behaves cautiously in order to prevent an
unnecessary action for an outlier. Therefore, it
shows a slow response. The response time depends
on the size of the history horizon. A shorter his-
tory horizon generates faster response, but with
less accuracy. In Table 2, although the time series
analysis method produced less reduction in stan-
dard deviation, it was able to catch some of these
fast dynamic fluctuations for the temperature of
SepVap that the finite difference method missed.

5. CONCLUSIONS

In this paper two new approaches for dynamic
data reconciliation was proposed. The process
model which is originally defined by many equa-
tions in the simulation software was reduced,
treating the model as a black box and apply-
ing mput-output model identification techniques.
The application of these proposed techniques into

Variable \ Method FD TSA
Molar Flow Rate of SepVap 93.2 72.7
Temperature of SepVap - 12.7
Vapor Phase Fraction of LTSExit 34.3 31.4
Molar Flow Rate of SepLiq - -

Temperature of LT SExit 46.4 35.7
Molar Flow Rate of TowerInlet 67.2 30.1

Table 2. Standard Deviation Reduction
for Depropanizer Example
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industrial systems enables more accurate data
for process control and on-line optimization. The
main weakness of the proposed approach is the
computational time is spent on model identifica-
tion. This can be significantly reduced by utiliz-
ing previous simulation results during the model
identification step of the next data reconciliation
iteration, making on-line data reconciliation fea-
sible.

The finite difference and time series analysis meth-
ods use different approaches to identify the dy-
namic behavior of the system. Therefore, both
have some advantages and disadvantages over an-
other. For oscillatory systems, time series analysis
is better suited since it has better smoothing prop-
erties than the finite difference approach. Another
advantage of time series analysis approach is that
it does not use approximations to first deriva-
tives. One approximation of the finite difference
approach is that first derivatives are generated
from simulation results applying a finite difference
method. Another approximation is that since the
finite elements approach uses a model in ODE
form, differential equations are converted into al-
gebraic ones using collocation on finite elements
during optimization. In time series analysis ap-
proach, the model equations are already in alge-
braic form. Therefore, this second approximation
is not necessary.
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