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Abstract: A fault tolerant control scheme that accommodates sensor and actuator
faults while maintaining optimal performance with respect to reference tracking is
devised. Optimal fault-accommodation is achieved by solving a norm minimization
problem which has been extensively studied in the literature. Here attention is focused
on multiple-input single-output (MISO) systems. It is shown that, if the interest
lies in the fault-tolerance of the output only, then the optimal tracking and fault-
accommodation problems are totally decoupled. Motivated by the need to update
in real-time the controller parameters as faults develop, an alternative scheme is
presented which trades-off some optimality for computational simplicity. Copyright
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1. INTRODUCTION

Fault-tolerant control (FTC) is a relatively new
field of research addressing the issue of designing
controllers that are able to ensure the safe and
efficient operation of the controlled system despite
the occurrence of faults (Blanke et al., 2000).

Typically, fault-tolerance is achieved by imple-
menting an automatic fault-detection and diag-
nosis scheme followed by a fault-accommodation
or controller-reconfiguration algorithm. Tortora et
al. (2002) and Tortora et al. (2001) present a dif-
ferent approach to fault-tolerance and apply it to
the case of sensor-fault accommodation in SIMO
systems where the control aim is to minimize the
effect on a primary output of faults occurring
on all available sensors while maintaining optimal
performance in respect of reference tracking. This
approach is based on the assumption that intelli-
gent instrumentation (such as SEVA sensors) is
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deployed. These devices return to the user not
only a working/faulty flag, but also a measure
of the reliability of the instrumentation which
can therefore be constantly and easily monitored.
In Tortora et al. (2001) it is assumed that the
sensor reading is corrupted at all times by additive
noise, the size of the bounds on the noise giving
a measure of the performance of the sensor. It is
then possible to model sensor faults as an increase
in the size of the bounds of the noise super-
imposed on the measurement signal, leading to
a fault-accommodation algorithm that minimizes
the effect on the controlled output of deterioration
in sensor performance. The sensitivity of the con-
trolled output to sensor faults is measured by the
induced Il norm (i.e. the !; norm) of the transfer
function from noise to output. Moreover, the class
of controllers that give optimal tracking perfor-
mance (measured by an ls norm) is defined so that
restricting the choice of controllers to this class al-
lows to accommodate faults without affecting the
optimal tracking properties of the closed loop. In



Tortora et al. (2001) it is proved that the two op-
timizations of tracking and fault-accommodation
performance are completely decoupled. This is a
very desirable property, meaning that both op-
tima can be obtained simultaneously.

The current work uses the same Iy — I framework
but extends it to consider the effect of both sensor
and actuator faults on both the input and out-
put variables. Similarly to sensor faults, actuator
faults are modelled as an increase in an input
disturbance. Again the disturbance is assumed
to be additive and bounded. The systems under
consideration are MISQO, so that actuator redun-
dancy is used to accommodate faults. The optimal
tracking problem is set and solved in §2. The
optimal fault-accommodation problem is solved
in §3. It is furthermore established that, if we
are only interested in the fault-tolerance of the
output, the decoupling property of Tortora et al.
(2001) can be extended to the case where fault-
tolerance performance is measured with respect
to both sensor and actuator faults. Moreover, the
simultaneous optimization of reference tracking
and output fault-tolerance still allows degrees of
freedom in the controller. These can then be de-
ployed to minimize input fault-tolerance. In §4 a
computationally inexpensive and transparent (al-
beit suboptimal) alternative method of achieving
fault-tolerance is presented. Numerical examples
in §5 show that the suboptimality of this alterna-
tive method can be small.

Throughout this paper a discrete time system is
assumed.The following convention will be used:

e no distinction between transfer functions and
polynomials;

e lower case (l.c.) = scalar or scalar ransfer

function;

l.c. underlined = vector of scalars;

upper case (u.c). = matrix;

bold l.c = vector of transfer functions;

bold u.c = for matrix of transfer functions;

.i = i*" element of a vector;

., = i, jt* element of a matrix;

i3 = transfer function from i to j;

(?) denotes t-domain;

C, denotes the the Toeplitz convolution ma-

trix of the polynomial a(z~!). This a lower

triangular matrix where the i, j** element is

given by the coefficient of the (i — j)** power

of 27! in the polynomial a(z7!);

e ||.]li = induced I, -norm for TFs or ratios of
z-transforms and !;-norms for ¢t-domain.

2. THE TRACKING PROBLEM

Consider a MISO system with output ¥ and {
inputs denoted by the vector u. The system is
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subjected to measurement noise (z) and input
disturbances (d) representing respectively sensor
and actuator faults. The problem is to find a
controller that minimizes the cost Ji,,.) defined
as:

i
Tirack = IF =3l +D_Nllal3, Q)
i=1
assuming £ =0, d = (,

where ii; denotes the i** input and ||.||2 denotes
the I norm. Let bT, a be the plant zero and
pole polynomial respectively. Standard I theory
can be used to find the controller parameters
h, m, n that, deployed in the loop configuration of
figure 1, minimize Jy ., ). The closed-loop transfer
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Fig. 1. Loop block diagram.
function from reference to output is given by:
bTh
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Let p denote the optimal closed loop pole polyno-
mial:

p=am + bTn, p(co) = a(x). (3)

Considering eqn.2 it is apparent that the optimal
Jirack can be achieved by any m, n satisfying
eqn.3. The general class of controllers satisfying
eqn.3 can be obtained by simple transposition of
the result in Tortora et al. (2002) which for brevity
is given here without proof.

Lemma 2.1. (Tortora et al., 2002). The whole
class of stabilising m and n that minimizes the
tracking cost of (2) is given as:

[’SJ = [733] * [ﬁ;] 4 ach (4

where:

ame+bTn, =p, e = —b, E = — (al + KE,)
(5)
and K; is a matrix representation of the ker-

nel of b?, while E; is such that the zeros of
det {al + K,E;) are all within the unit circle.



3. OPTIMAL REFERENCE TRACKING
WITH FAULT-ACCOMMODATION

3.1 Optimization of mized output and input fault
tolerance

As explained in the introduction, sensor and ac-
tuator faults are modelled as an increase in the
bounds of (respectively) the measurement noise
and the input disturbances. The reliability of the
sensor and of the actuators can then be expressed
by the scalar s® and the vector s¢ defined as:

5= [lldillco - lldillc] - (6)

Fault-tolerance of the inputs and output is mea-
sured by the oo-norms of &, i for the worst case
over the whole class of instrumentation faults (i.e.
the whole class of %, d satisfying eqn. 6). The
indices of fault-tolerance Jy and Ju of the output
and inputs are then defined as:

8% = ||Z}|cos

Jy = 17" lloos Ju = [|&*[lo (assuming r = 0),

()
where superscript .* is used to denote the worst
case over the whole class of faults. Assuming that
the measures of sensor and actuator performance
s* and s® are known, Jy and Jy can be easily com-
puted using the l; norms of the transfer functions
from z and d to y and w:

Jy=). (llgi'“”lll g?) + llg"¥l 5%, (8)

Ju=max [E (116510 5£) + 1™ sx]w)

For the loop configuration of Figure 1 these trans-
fer functions are given by:

bT T
g e
T
Y= —an, g = —%. (10b)

Fault-tolerance can in general be measured by a
“mixed fault-tolerance” index Jy g defined as:

Jmft = Jy +oJu (11)

where o is a constant. Mixed fault-tolerance can
then be maximised subject to optimal tracking
performance by minimizing J, ¢ over the class of
eqn.4 using eqns.8,9,10. In general this will define
a “bad-rank” [; minimization problem (McDonald
and Pearson, 1991) so that the optimal q mini-
mizing J ¢ will be a vector of transfer functions.
This creates numerical problems since the mini-
mization of J, g is given by an LP with an infi-
nite number of variables and equality constraints.
However, a variety of methods to get around this
problem and obtain arbitrarily good approxima-
tions to the optimal have been devised. The most

obvious approach is to optimize over a vector
of polynomials q and to truncate the transfer
functions giving the equality constraints. As n,
(the number of terms in each of the polynomial
elements) tends to infinity then the solution to
the LP will tend to the optimal Jy,¢. This is
the Q-design method (Boyd and Barratt, 1991)
an the resulting LP will not be discussed here.
Recent research has concentrated on other meth-
ods of solving /; optimization problems which
provide converging upper and lower bounds to
the optimal solution (Khammash, 1997; Elia and
Dahleh, 1998).

3.2 Optimization of output fault-tolerance only

An important special case arises when J,¢ = Jy.
Optimal reference tracking with fault-accommodatic
then displays some important and desirable prop-
erties. The transfer functions affecting Jy are
g% and g*¥. Using eqn.3 we can rewrite:

am
g“"—’y:—(l—-—), 12
» (12)
so that the optimal fault accommodation problem
is given by:
min Jy (13a)
m,n

subject to: am +b'n=p, m,necl;, (13b)

where:

b;m am, .
Iy =3 (1P st) + 11 - s, (14

i

Note that Jy of eqn.14 is a function of m only
(a scalar transfer function) but we also have n
appearing in condition 13b. However, n can be
eliminated by noting that, given an m € I,
condition 13b is equivalent to requiring that the
Bezout identity b’n = p — am has as a solution
some n € l;. This is equivalent to requiring that
p—am has as zeros the non-minimum phase zeros
of bT (where the zeros of the vector of polynomials
bT are defined as the roots of the GCD of all
its elements). Note that b7 will have at least one
non-minimum phase zero arising from a unit time
delay. Assume that there exist ng such zeros and
denote them by B;,8:,...,8n,. Then the fault
accommodation problem can be rewritten as:

b;
min [Z (12 st + 1 - “Tmulsz] (152

1

p(Bi)
a(B;)

subject to: m € I, m(B;) = V8. (15b)

Let
m = pm’ (16)



where m' will in general be a transfer function.
Then problem 15 becomes:

min | 37 (Ilbim'llsf) + 11 = am[l5°

1

(17a)

subject to: m’ € 1, m'(B;) = V8. (17b)

1
a(Bi)
Condition 17b, together with eqns.3 and 16 define
an alternative controller parametrization for the
minimization of Jy subject to optimal Ji,ack-
Instead of minimizing over the vector of transfer
functions q we minimize over the scalar transfer
function m' subject to (17b) and recover m from
eqn.16 and n as a solution to the Bezout identity
b"™n = p — am. The solution to the latter is
non-unique but, as explained earlier, this has no
bearing in the minimization of Jy.

Moreover, note that p and h which minimize
Jirack (see eqns.2, 3) do not appear in problem 17.
This implies that it is possible to simultaneously
optimize both Ji 4. and Jy. That is, the pair
Mgpt, Nopt Minimizing Jy subject to the optimal
Jirack actually attain the minimum Jy over the
whole class of stabilizing controllers. This fact is
summarized in the theorem below.

Theorem 3.1. Let mgp be the minimizer of prob-
lem 15 and n,y; be such that:

Nopt € 1 amept + anopt = p. (18)

Then the pair mep, nop: not only minimizes
Jirack but also achieves the minimum Jy over the
whole class of stabilizing controllers.

In general mop, and ngp will not be polynomial.
However, an arbitrarily good approximation to
the optimal can be obtained by taking m' to
be a polynomial of arbitrarily high order. Let
7 be a vector of length n,, V5 be the n, x ng
Vandermonde matrix for the set {g;}, and

1/0(31)
vg = :
1/a(Bns)

Moreover, let n, be the number of elements of
the polynomial a, and Cy,, C, denote the first
n.,, columns and 7, + n, — 1 rows of the Toeplitz
convolution matrix for b; and a respectively (see
convention in §1). Then Problem 17 can be solved

within any desired accuracy using the following
LP:

Hopt = min [OT st 35] 11 (19a)

P

subject to:

Cﬁl 1 _
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(19b)

where:

ST =[s01T .. 17 5217 (199)

As ny, — 00, popt tends to the solution of Problem
17 and the minimizer 4., tends to the vector of
the coefficients of m},, such that mep = pmgy,.
The computational advantage of using the LP of
(19) over the equivalent LP using truncated q is
two-fold. First of all for a certain order of the
closed loop polynomials (given by 7, —_) there
are fewer variables since we are effectively min-
imizing over the polynomial m’ rather than the
vector of polynomials q. Moreover, the equality
constraints defined by the Toeplitz matrices are
finite and need not be truncated like they would
be if we used truncated q . The reduction in the
number of equality constraints and the fact that
they are exact makes the LP of (19) faster and
more robust to numerical errors.

3.3 Minimizing Jy subject to optimal Jy, .1 and
optimal Jy

The solution for the controller minimizing simul-
taneously Jy and Ji,, . is not unique since given
an Mgy there is a class of n,p, satisfying the Be-
zout identity of (18). This class is easily obtainable
as:

Doy = Ny + Kbqpa aMmept + anp =p, Np,qp € h
(20)

where K, has already been defined in Lemma 2.1
as the kernel of b7. Moreover from eqns.9 and 10
it is clear that Jy depends on n. Having minimized
Jy and Jip, o it would therefore be sensible to use
the remaining degrees of freedom in the choice of
n by minimizing Jy over the class of (20). Again
this leads to a “bad-rank” l; problem that can
be solved by any of the methods quoted in §3.1.
Using the Q-design method to minimize Jy leads
to an LP with truncated constraints. Numerical
examples show that the minimum .Jy achievable
is affected by the minimization of Ji, . and Jy.
Therefore performing the successive minimization
of the three indices Ji, 41, Jy,Ju gives the global
minimum for the first two but not for the third.
On the other hand, minimizing Jy and then Jy in
succession is computationally more efficient than
minimizing a linear combination of them.



4. FAULT ACCOMMODATION: REDUCING
THE COMPUTATIONAL BURDEN

The fault-accommodation algorithm works by
monitoring the indices of sensor and actuator
performance s® and s?. Each time these change
the optimal controller parameters need to be re-
computed. Therefore the LP’s optimizing fault-
tolerance need to be performed on-line, as the
faults develop. The computational cost of the
fault-accommodation algorithm then becomes of
paramount importance. As explained in §3 one
way to reduce the computational burden is to
minimize Jy and Jy in succession. Moreover, the
optimization can be made simpler by reducing
the numbers of terms in the controllers. However
both these measures are likely to yield heavily sub-
optimal solutions.

An alternative is to constrain the polynomial
vector q to be given by a mix of n, stable pre-
defined polynomial vectors q; such that:

e
a=Y pai i €h, (21)
i=1

and defining the controller m, n from the parametriza-

tion of eqn.4. Fault-tolerance can then be achieved
by optimizing Ji ¢ over the coefficients p; rather
than the polynomial vector q. For transparency
and efficiency purposes it would be desirable to
deal optimally with the complete failure of any
actuator or of the sensor by setting one of the
variables p; equal to 1 and all the others equal to
zero. This can be done by choosing the polynomial
vectors q; as the solutions to the optimal fault-
accommodation problem (§3) for s* and for each
one of the elements of g% going to infinity in turn.
Different criteria for the choice of the set of q; can
of course be used, so that optimality is recovered
for a variety of fault scenarios. This is illustrated
through an example in §5. Using more functions
q; would obviously improve fault-tolerance as well
as the number of variables of the on-line optimiza-
tion, leading to a trade-off between optimality
and computation time. Note that the q; can be
computed off-line.

The foremost advantage of the “mixed” scheme
proposed in this section compared to the optimal
methods of §3 is that, for a given order of con-
troller, we have fewer variables in the optimiza-
tion and hence a faster algorithm. For the min-
imization over all stabilizing controllers to have
a comparable computational cost we would need
to keep the controller order much lower, leading
to suboptimality for all operating conditions. On
the other hand, the scheme proposed in this sec-
tion can provide optimal controllers in the case
of complete failure of the sensor or of one of the
actuators, while being far more transparent to the
operator than the schemes of §3.

5. NUMERICAL EXAMPLES

In this section the benefits of fault-accommodation
will be illustrated using numerical examples. The
plant under consideration has two inputs and one
output. The open loop pole and zero polynomials
are taken to be:

a=(1-152"1)(1-0992"")(1+1.127'X22)
_ 152711 - 1.3271)(1 + 0.5272)

b= 22711 -1.227"H(1+0.627%) |

(23)

For simplicity throughout this section we assume
that Jmft = Jy

Fig. 2. Variation of Jy, optimal fault-

accommodation.

Figure 2 shows the variation of Jy as fault-
accommodation is performed using the optimal
LP of (19). The values shown are for s¢ = 1.

Fig. 3. Faulty actuator 1. Comparing % subop-
timality of sets 1 (continuous line) and 2
(dashed line).

The plots of figure 3 show the suboptimality of the
“mixed” strategy (§4) as the first actuator fails,
namely as g‘li increases and §g , 8T are held fixed at
1. In order to show the flexibility of this strategy
the results obtained using two different sets of
q; are displayed. The continuous line is given by
using “set 1”7 and the dashed line by using “set 2”.

These are defined in Tables 1 and 2 respectively.



Fig. 4. Faulty sensor . Comparing % suboptimality
of sets 1 {continuous line) and 2 (dashed line).

Table 1. Set 1

Optimal solution for 54 5
q1 Faulty act. 1 10 0.1 0.1
q2 Faulty act. 2 0.1 10 0.1
qs Faulty sensor 0.1 0.1 10
Table 2. Set 2
Optimal solution for 54 8%
qi1 Faulty act. 1 10 0.1 0.1
q2 Faulty act. 2 0.1 10 0.1
q3  All working equally well [1 l] 1

As expected both sets are optimal as s — oo

(of course the same property will pertain with
s4). Using set 1 will allow to recover the optimal
controller in the case of complete failure of one of
the actuators or of the sensor. Set 2 is unable to
deal efficiently with sensor faults but on the other
hand is also optimal when all instrumentation
is working equally well. This is shown in figure
4 where the suboptimalities of the two sets are
compared for s* varying and s¢ = s% = 1 (sensor
fault scenario).

6. CONCLUSIONS

This paper has treated the problem of accommo-
dating sensor and actuator faults. The faults are
modelled as an increase in the measurement noises
and input disturbances respectively. The bounds
on these are assumed to be known thanks to the
use of intelligent instrumentation.

The control design objective is to accommodate
optimally faults as they develop, in real-time while
maintaining optimal performance with respect to
reference tracking (measured by the I3 cost index
Jtrack)' l; norms are used to define a suitable
measure of fault-tolerance (Jy,f) incorporating
the effect that faults have on both the output (Jy)
and the inputs (Ju). It is shown that this problem
can be solved using norm minimization methods

which are extensively treated in the literature.
Moreover, it is shown that the minimizations
of Jiyrack and Jy alone have the property of
being independent of each other, i.e. that there
exist controllers that simultaneously achieve the
optimal Jy and the optimal Ji ... Also, this
optimization can be performed using a controller
parametrization alternative to the Youla, leading
to a simpler algorithm. Furthermore, the optimal
controller is not unique so that the remaining
degrees of freedom can be used to minimize Jy.

The optimal controller parameters have to be
computed on-line as faults develop prompting
the need for a computationally inexpensive fault-
accommodation algorithm. This motivates the al-
ternative fault-accommodation scheme described
in §4. This scheme reduces the on-line computa-
tional burden and still yields optimal reference
tracking while optimally accommodating faults
in given fault scenarios. The reduction in on-line
computation is achieved at the cost of some sub-
optimality in fault-tolerance for other reliability
levels of the instruments. This alternative scheme
has the added advantage of great transparency to
the user since it can deal with the failure of a
single instrument by setting one coefficient equal
to 1 and all the others equal to 0. Finally, the
numerical examples of §5 suggest that the degree
of suboptimality can be rather small.
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