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Abstract: The problem of (local) static output feedback stabilization for a class of minimum
phase relative degree two systems is studied. It is shown that, under natural assumptions, it is
possible to design a stabilizing static output feedback control law and to give an estimate of
the resulting region of attraction. The general results are illustrated via examples.
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1. INTRODUCTION

In this work, the problem of local static output feed-
back stabilization of single-input single-output sys-
tems described by equations of the form

�� � ���� ��� � � � � ���
��� � ��
...
��� � �� ��� ��� � � � � ��� � ����� ��� � � � � ����

 � ��

(1)

in which � � �����, �� � �� for all � � �� � � � � �,
� � �� is the control input, ���� ��� � � � � ��� is a
smooth vector valued function such that ��	� � � � � 	� �
	, �� ��� ��� � � � � ��� and ����� ��� � � � � ��� are smooth
scalar functions such that �� �	� � � � � 	� � 	 and
���	� � � � � 	� � 	, is studied. System (1) has been
widely studied in the nonlinear control community.
Necessary and sufficient conditions for global equiv-
alence of a general single-input nonlinear system to
the form (1) has been given in (Byrnes and Isidori,
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1991), whereas semiglobal stabilization, using par-
tial state feedback, has been studied in (Byrnes and
Isidori, 1991; Teel, 1996). In (Sussmann, 1990) it
has been shown that, if � � � global stabilization
either with full state feedback or with partial state
feedback cannot be achieved in general. This limita-
tion is associated with the presence of the peaking
phenomenon, discussed in detail in (Sussmann and
Kokotovic, 1991), and with the fact that the � sub-
system with the �� regarded as input may not be Input-
to-State-Stable. In the case � � � semiglobal stabi-
lization can be achieved by high gain static output
feedback (Byrnes and Isidori, 1991), provided that
the system �� � ���� 	� is globally asymptotically
stable; whereas global stabilizers can (in principle)
be constructed using a simple back-stepping argument
(Krstic et al., 1995). In the case � � 
 global asymp-
totic stabilization using full state feedback has been
studied in (Astolfi, 1998).

The case in which the � sub-system is described by
an equation of the form �� � ���� ��� for some �,
has been widely studied in (Kokotovic and Sussmann,
1989; Saberi et al., 1990), whereas the case in which
the � sub-system is driven only by one of the � �
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variables, i.e. �� � ���� ��� for some �, has been studied
in (Isidori, 1995, Chapter 9). Finally, some analysis
tools for the considered class of systems have been
given in (Teel, 1996) and the problem of semiglobal
(robust) stabilization using dynamic output feedback
has been recently solved in (Isidori, 2000).

The present work has been motivated by some of
the results in (Byrnes and Isidori, 1991; Byrnes et
al., 1991). Therein, among others, the problem of
semiglobal stabilization by means of high gain partial
state feedback for system (1) has been studied, and it
has been shown that, if � � � semiglobal stabilization
by static output feedback is achievable. Here the prob-
lem of static output feedback stabilization for system
(1) in the case of � � 
 is addressed. In the case of
linear systems it is well known that this problem is
solvable by high gain feedback if (and only if) the so-
called center of the asymptotes of the root-locus lies in
the left half of the complex plane. This interpretation
does not have an immediate nonlinear counterpart.
Nevertheless, it will be shown that, under suitable as-
sumptions, a nonlinear notion of center of the asymp-
totes can be given. Finally, contrary to the results in
(Byrnes and Isidori, 1991; Byrnes et al., 1991), but in
agreement with the conclusions in (Sussmann, 1990),
in the present context only local asymptotic stability
can be achieved. However together with the stabilizing
control law we will provide an estimate for the domain
of attraction of the zero equilibrium. More precisely,
the following problem is studied.

Problem 1. Given system (1) with � � 
. Find (if
possible) a static output feedback control law � �
���
� and a set � � �	� 	� � � � � 	�, such that

� the origin is a locally asymptotically (exponen-
tially) stable equilibrium of the closed loop sys-
tem;

� for any initial conditions ���� ��� � �, the corre-
sponding trajectory converges to the origin.

Throughout the paper, the following standing assump-
tions will be made.

Assumption 1. The system �� � ���� 	� 	� � � � � 	� has
� � 	 as a globally asymptotically, locally expo-
nentially, stable equilibrium and we know a smooth
positive definite and proper function� ��� and positive
constants ��, ��, Æ and �, such that

�� ���� � � ��� � �� �����
������ 	� 	� � � � � 	� � �Æ�����

���� � �����

If this condition is fulfilled, the system (1) is said to be
globally (exponentially) minimum phase.

Assumption 2. There are smooth functions ������,
������, and  ��� ��� ��� such that

�� ��� ��� ��� � � ��� ��� ����� � �������

����� ��� ��� � ������

with ������ �� 	 for all ��. Moreover, there exists
 � 	 such that  ��� ��� ��� �  � 	 for all �, ��
and ��.

If this assumption is satisfied, there exists a static out-
put feedback such that the resulting controlled system
is described by the equations

�� � ���� ��� ���
��� � ��
��� � � ��� ��� ����� � �

 � ���

(2)

Moreover, note that, under mild regularity conditions,
it is always possible to factor (in a non-unique way)
the term ���� ��� ��� as ����� � � ��� ��� ����.

Assumption 3. The vector� ��� ��� ��� is such that, for
some known �� and �������,

�� ��� ��� ���� � �� � ������� ���� (3)

Remark 1. Under the stated Assumptions, system (2)
with � � 	 is locally stable, whereas, system (2) with
� � ��
 and � � 	 is locally exponentially stable.
However, goal of the paper, as said in the statement of
Problem 1, is to provide an estimate of the region of
attraction of the origin, as a function of �.

Remark 2. Note that condition (3) is imposed only for
convenience of exposition and to obtain simple and
workable formulae. All results of the paper can be
extended to the more general case in which, for some
integer � � 	,

�� ��� ��� ���� � �� � ������� �����

The present paper is organized as follows. In Section
2 the meaning of Assumption 2 is considered more
precisely. In Section 3 a way to construct a feedback
law

� � ��
 (4)

achieving local (exponential) stability of the zero equi-
librium of the closed loop system (2)-(4) and to derive
an estimate � of its domain of attraction is given.
Finally, in Section 4 some examples illustrate the main
results and in Section 5 concluding remarks are pro-
vided.

2. ON ASSUMPTION 2

In this section the assumption on the function ��� ��� ���
to be positive is briefly motivated.



Lemma 1. Consider system (2) and assume the system
is linear. Then the system is output feedback stabi-
lizable by high gain output feedback if and only if
 ��� ��� ��� �  � 	.

Proof. As the system (2) has relative degree two and
positive high frequency gain, the positive root locus
will have one asymptote parallel to the imaginary
axis. A simple computation shows that this asymptote
intersects the real axis at the point � !
, hence the
claim. "

In the case of nonlinear systems the above root lo-
cus argument does not carry over. However, using
the general results in (Astolfi and Colaneri, 2000), a
necessary condition for (local) static output feedback
stabilizability for system (2) is as follows.

Lemma 2. Consider system (2). The system is static
output feedback stabilizable only if there exists a
positive definite function # ��� ��� ��� such that, for
any ��� ���, �# 	���� �# 	����� 	.

Despite its simplicity, the above condition cannot be
easily tested. However, if the study is restricted to a
special class of positive definite functions, it yields a
simpler result.

Lemma 3. Consider system (2). Suppose

# ��� ��� ��� � � ��� � ��$��

where � � ������ ���, � ��� is the function given in
Assumption 1,

$ �

�
��
�

�
� %� �

�

�

�

�
�

�

�

��
� %

�
�� � (5)

with � � 	, � � 	 and % � 	. Then

�# 	���� �# 	����� 	

implies  �	� 	� ��� � 	�

Remark 3. It is worth noting that the assumption
 ��� ��� ��� � 	 is stronger then the condition given
in the above Lemma.

3. MAIN RESULTS

This section explains how to construct a locally stabi-
lizing control law and how to estimate its domain of
attraction. The construction is broken up in four steps.

� It is shown that �# , with # �
� as in Lemma 3,
can be upper bounded by a function independent
from the parameter �.

� An estimate of the level sets of # �
� as a func-
tion of � is given.

� An estimate of the set � in which �# & 	 is
given.

� The set � (whenever it exists) is constructed.

3.1 Upper bound on �#

Consider the positive definite (and proper) function

# ��� ��� ��� � � ��� � ��$�

where � ��� is as in Assumption 1 and $ is as in
Lemma 3, i.e.

$ �

�
��
�

�
� %� �

�

�

�

�
�

�

�

��
� %

�
��

with � � 	, % � 	 and � � 	. A simple computation
shows that

�# � �� �� � 
������
�



�
� 
 ��� ��� ����

�

��
� %�

�
��� �

(6)

The next result shows that, with a proper selection
of � and % it is possible to upper bound �# with a
function which does not depend on K, provided � is
sufficiently large.

Proposition 1. Consider �# in equation (6). Then, for
any 	 & ' & 
 there exists �� � 	 such that for any
� � ��, �# � �� �� � ��
� '� �����

Remark 4. Note that the bound on �# � �� �� does not
depend upon �, that �� depends on % and that % is a
free parameter, provided that % � �! .

If  ��� ��� ��� is constant, then it is possible to obtain a
sharper bound, as detailed in the following statement.

Corollary 1. Suppose  ��� ��� ��� �  � 	. Then if

% � �
� , �# � �� �� � 
�����

3.2 Estimate of the level sets of #

Consider the candidate Lyapunov function

# ��� ��� ��� � � ��� � ��$�

. The level sets of # are the sets

���� �� � ������� ���� !# ��� ��� ��� � ��!
�

where � � 	 is a constant. For any ��� ��� ���, one has

� ��� � (	���$ � ���� � # ��� ��� ���

# ��� ��� ��� � � ��� � (	
��$ � �����



Thus, the boundary of the level sets of # is enclosed
in the region described by the two inequalities

� ��� � (	���$ � ���� � ��!


� ��� � (	
��$ � ���� � ��!

(7)

Note now that, following the conclusions in Propo-
sition 1, � has to be larger than a certain �� and
that (	���$ � and (	
��$ � are functions of � and
%. Therefore, for any fixed d, there exists � � such that
the inequalities (7) with � � �� yield the largest
possible level set for # .

For simplicity, assume that � ��� � ����!
. As a re-
sult, the sets described by inequalities (7) are ellipses.
(	
��$ �, as functions of �, has a global minimum,
which depends on %. It is therefore possible to set � �

and %� such that

(	
��$ ��
�� %��� � ���

����� �����	
(	
��$ ��� %���

Note that this selection has the goal to render the
region given by the second of the inequalities (7)
as large as possible. However, if the above (global)
minimization problem is not solvable, any pair ��� %�
allows to compute a subset of the region of attraction
of the origin.

3.3 Estimate of the set � where �# & 	

In this section an estimate of the set where �# is
negative is given. By Proposition 1, �# can be upper
bounded by �# ��� ��� ��� � �� �� � �
� '� ����� with
	 & ' & 
 and �� � ����� � � ��� ��� ����. Moreover,
by Assumptions 1 and 3, one has

�# ��� ��� ��� � �Æ ���� � � ��� �� ����

� ��� ������� ���� � �
� '� ���� � ���� ���

���� �� can be seen as a quadratic function in ���.
Thus, if its discriminant ) is non-positive for ��� �
���� then ���� �� is non-positive for ��� � ���� and
all �, whereas if ) is positive for some ���, ���� �� �
	 is equivalent to

��� � ������� 
�
)


���
� '� � ������������

where the constants �, Æ, ', �� and the function
������� are known. As a result, it is trivial to deter-
mine the regions of the plane ����� ����where���� ��
is negative, positive or equal to zero. Note finally, that

� � ���� �� � ����� � ��� 	 ���� �� & 	� �
���� �� � ����� � ��� 	 �# & 	� � ��

3.4 Construction of the set �

In this section an estimate � of the region of attraction
of the zero equilibrium of the system (2) with � �
��
 is provided.

Such a region of attraction can be characterized as the
largest level set of # contained in the set �, defined
in Subsection 3.3. However, as only estimates of the
level set of # and of � are available, the set � has to
be defined as

���� ��� ��� 	 � ��� � (	
��$ ���� ���� � �����!
��
where �� � 	 is the maximum value of � such that

���� ��� ��� 	 � ����(	���$ ���� ���� � ��!
� � ��

Note that �� may be zero, see Examples 3 and 4, hence
it is not possible to give an estimate of the region of
attraction of the origin. Instead, if �� � 	, then � is
such that for all initial conditions ���� ��� � � the
trajectories of the closed loop system remain in � and
converge to zero.

Remark 5. Note that � is a simple to compute es-
timate of the region of stability of the closed loop
system. This implies that the real region of attraction
is larger. However, the exact characterization of the
latter is in general impossible. Finally, in some cases
(see Example 1) it is possible to compute precisely the
set �, i.e. the set where �# is negative, hence a more
accurate estimate of the region of attraction of the zero
equilibrium can be obtained.

4. SOME EXAMPLES

Some examples now illustrate the results developed.
The first two examples are adapted from (Sussmann,
1990).

Example 1. Consider the system

�� � �� � �
 ����
��� � ��
��� � ��� � �

 � ��

(8)

Let # ��� ��� ��� � � ��� � ��$�, with � ��� � ��!

and $ as in Lemma 3, with � � � and % � �. Note
moreover that  � �. Thus, it is easily shown that

�# � ��� � ������ � 
�����

Note now that �# � 	 is equivalent to

��� � ����
�� � 


�

when ��� � 
���. Hence, the set � can be easily
computed.



To compute the level sets of # , note that �� � 	 and
that the eigenvalues of $ ��� �� are given by

(	���	
���� �

� ��� � 
�

�� � �


�
�

As a result, (	
� reaches its minimum for � �
�

.

Thus, any level surface of# with� �
�

 is between

the two ellipses defined by the equations

��!
 � (	���
�

� ���� � ��!


��!
 � (	
��
�

� ���� � ��!
�

for some � � 	. To find � we need to compute
the largest value of �, i.e. ��, such that the ellipse
described by the equation

��!
 � (	���
�

� ���� � ��!


is enclosed in the set �. A simple computation shows
that �� � 
�	��, and this allows to compute explicitly
�, i.e.

� � ���� �� � ������	�
�



�(	
��

�

����� � ��

�

!
��

Example 2. Consider the system

�� � ���� � �� �
 � ���� � ��� � �� �
��� � ��
��� � ��� � �

 � ��

(9)

Let# ��� ��� ��� � � ������$�, where � ��� � ��!
,
$ is as in Lemma 3, and � � � and % � �. Then, �#
can be upper bounded, using Young’s inequality, by
the function ���� �� � ���� ���
������� 
�����
which is non positive on the set � � ���� �� 	 ��� �
��. The level sets of # have the same structure as in
Example 1. Hence, to compute the set � we only need
to find ��. For, note that the set

���� ��� ��� 	 ��!
 � (	���
�

� ���� � ��!
�

has to be enclosed in �, consequently �� � �. As a
result

� � ���� �� � ������	 �
�



�(	
��

�

����� � �!
��

Remark 6. For the system considered in this example,
it has been proved in (Sussmann, 1990) that, no matter
what control is selected, all points ��� ��� ��� such that
��� � 
 are explosive points. Obviously, these points
cannot be part of the region of attraction of the origin.
Consistently with this observation, it is easy to see that

���� ��� ��� 	 ��� � 
� � � � ��

For both Examples 1 and 2, simulations confirm that
for any initial conditions ���� ��� � �, the trajectories
of the closed loop system remain in � and converge to
zero. Moreover, there are points close to � but not in
� yielding trajectories that converge to the origin, thus
showing that the real region of attraction is larger than

�. However, all points sufficiently away from � result
in trajectories that do not converge to the origin.

The next two examples illustrate the fact that � may
be empty. Note that this does not mean that the closed
loop system is not locally exponentially stable (around
zero), but simply that the Lyapunov argument dis-
cussed in the paper is not applicable.

Example 3. Consider the system

�� � �� � �� � �������
��� � ��
��� � �
�� � �

 � ��

(10)

Let # ��� ��� ��� � � ��� � ��$�, with � ��� � ��!

and $ as before, and � � 
 and % � �!
. Then

�# � ��� � �� � ���� ���� � 
�����
and �# � 	 is equivalent to

��� � �� � ���� �  ���	�� � ����� � �

�
�

Note now that ���������� is always positive, hence
in any neighborhood of the origin there are points in
which �# � 	. As a result � � �.

Remark 7. A simple analysis shows that all trajecto-
ries of the system in closed loop with � � ��
, and
� � 	, converge to the origin. This is a consequence
of the fact that the �� equation is globally Lipschitz
in �, hence trajectories exist for all time. To have a
better understanding of the behavior of the closed loop
system note that for any initial conditions, �� and ��
converge exponentially to zero. Hence, the �� equation
can be rewritten as �� � �*��� 	�� � ���	�� where
��	� � 	 for all 	, and ��	� converges exponentially
to zero. This system is a time varying system, driven
by an exponentially decaying signal, with the prop-
erty that ������ *��� 	� � �, where *��� 	� � � �
���������	�� Hence � converges exponentially to the
origin. However, the system is not uniformly stable,
i.e. the trajectories may have large overshots.

Example 4. Consider the system

�� � �� � �� � ��������
��� � ��
��� � �
�� � �

 � ��

(11)

Let # ��� ��� ��� � � ��� � ��$�, with � ��� � ��!

and $ as before, and � � 
 and % � �!
. Then �# is
as in Example 3. As a result � � �.

Remark 8. Unlike Example (3), the �� equation is not
globally Lipschitz in �. Thus, not all trajectories of the
closed loop system converge to the origin, or exist for
all time. This conclusion can be also confirmed with
simulations.



To conclude the section, an example that does not
satisfy Assumption 1 is given.

Example 5. Consider the system

�� � ��
 � +�����
��� � ��
��� � ��� � �

 � ��

(12)

with + � 	. Note that the system is not exponentially
minimum phase. To apply the methodology described
above, let# ��� ��� ��� � � ������$�, where � ��� �
��!
 and $ is as in Lemma 3, and � � � and
% � �. Then, �# can be upper bounded, using Young’s
inequality, by the function

���� �� � ��� � +



������ � 
�����

Using similar considerations as in Example 1, and
setting, for simplicity, + � �!�	, we conclude that

� � ���� �� � ������ 	 �
�



��
�

�

� ���� � �����



��

with �� � �.

5. CONCLUSION

The problem of local static output feedback stabiliza-
tion for a certain class of nonlinear minimum phase
relative degree two systems has been addressed. It
has been shown that, under suitable assumptions, it
is possible to find a feedback control law � � ��

and a set � of initial conditions, such that the closed
loop system is locally exponentially stable and � is
an estimate of the region of attraction of the zero
equilibrium. The general theory has been illustrated
via examples.

Note finally that all results have been stated assuming
that the system is in normal form. However, coordi-
nates free description of the results can be also given.
This issue is left for further investigation.
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