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Abstract: In this paper we propose a new output decentralized model reference adaptive
control scheme to improve the steady state performance for a case large-scale systems
with unknown interconnection strengths as well as uncertainties in subsystem dynamics.
Additional model reference feedforward signals are introduced in the adaptive scheme.
The proposed scheme uses decentralized local output feedback with centralized model
reference coordination and provides zero tracking errors. In this way the totally decen-
tralized structure of the current information update is saved, since there is no exchange
of signals between the different subsystems. The simulation results have shown the
effectiveness of our proposed scheme.
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1. INTRODUCTION Unfortunately, the best that can be achieved in most
known model reference adaptive decentralized control

In recent years there has been considerable interesfaws in the presence of parametric disturbances is the
to study decentralized adaptive control of large-scale convergence of errors to some bounded residual set.
dynamic systems. A variety of decentralized adaptive The bounds of this set are unknowrpriori and the
techniques have been developed usingNhenatrix  size depends on the global bound of the strength of the
test in (loannou and Kokotovich, 1983), (Mirkin, unmodelled interconnections. Hence, such adaptive
1986), a high-gain approach in (Gavel and Siljak, schemes may be unsuitable for applications, and there
1989), (Mirkin and Choi, 1991), Morse’s dynamic cer- s a needs to develop new methods which would make
tainty equivalence principle in (Ortega, 1996), adap- it possible to avoid this disadvantage.
tive backstepping in (Jain and Khorrami, 1997), and
parameter projection together with static normaliza- 7O the state feedback casgeach state of subsys-
tion for plants with stable dynamic interconnections in [€MSXi can be locally measured), (Mirkin, 1995) and
(Wen and Soh, 1999). A specific class of decentralized (Mirkin, 1999) proposed a new decentralized infor-
adaptive control is the decentralized model referenceMation structure with reference model coordination,
adaptive control (DMRAC). Most works focus on the whereby coordinating information about the_reference
state feedback case while less attention has been pai§'9nals of the other subsystems are used in all local
to the adaptive decentralized output feedback prob_contr_ol laws. This structure guarantees zero residual
lem. The latter problem is of great importance from a tracking errors.
theoretic point of view and is of great practical interest The purpose of this paper is to obtain the first solution
for applications. to the more challenging problem of decentraliped-
put asymptotic exactly trackirfgr large-scale systems
with parametric uncertainties. Local control based on
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output measurements is a natural prerequisite for all 3. PROBLEM FORMULATION
practical control problems.

Let theM reference models be given b
The controller will be said to béecentralized with gv y

model coordinationf the only information available _
to each subsystem controller is the corresponding sub- Xmi(t) = AmiXmi(t) + bmiri(t),

system input and output and the states of all reference ymi(t) =clxi(t), i=1,....M, 3
models that are assumed toderiori available to all
subsystems. In this way the totally decentralized struc-
ture of the current information update is saved, since
there is no exchange of signals between the different
subsystems.

where for theith model, xmi(t) € R% is the state
vector,r; € Ris the input andym; € R is the output.
The matriceAm;, bmi are known constant matrices of
appropriate dimensions.

Coordinates for each local model are chosen so that
the pairs(Ami,bmi) are in canonical form as in (1).
2. SYSTEM MODEL With this choice of coordinates, it is clear also, that

The class of large-scale plants withsubsystems and there exists constant unknown vectafs aj, by so
- .. — hAa* *T

parametric uncertainty that we shall consider in this that/j = biay}", A = Ami+ biay™", bimi = biby’

paper is of the form Then thecontrol objectiveis to design decentralized
controllers for system (1) and (2) such that the closed-
loop system is stable and the outpyi&) track the

Xi(t) = Aixi(t) +biui(t) + Z Ajx;(t) outputs of theM stable local reference modslig; (3)

with the aim that

yit)=¢ x(t), i=1,2,...,M, (1)
where for the i-th subsysterm e R" is the state vector fim e (t) = lim (yi(t) - ymi(t)) =0,
ui(t) € Ris the input control vectoryi(t) € Ris the i=1,2,...,M, (4)
output vector, the constant matricAse R"*", b, € . )
RY, Ajj € R¥M | are not specifiedz'j\",l n = n. The i.e. we demand that the tracking errors converge to
following assumptions are made: zero asymptotically with time.

All subsystems are completely controllable. The signs

of by are assumed to be positive. The matrices of 4. PROPOSED DECENTRALIZED ADAPTIVE
subsystemgy, bj and matrices of interactiofy;j have CONTROLLER

the form

Each local controller consist of two loops, i.e. the

o 1 .. 0 . ; :
_ _ _ controller for theith subsystem is defined as the sum
A=| ¢ R 7 of two components
0O 0 ... 1
i i i Ui(t) = i (t) 4 Ugi(t). 5
_all _a|2 _a:]i |(> II() gl() ( )
al =[-a,....—a], b=[0...b], The local feedback controller structurEhe differ-
entiator free local feedback controller structure with
Aij = biai*jT, a{‘J [a17 ,ar{ ] control component;; (t) is defined as in conventional
MRAC schemes that have been widely analyzed in
The composite system can be written as the literature of centralized and decentralized adaptive

control (Narendra and Annaswamy, 1989)

X(t) = Agx(t) + bgu(t) + bgA*x(t),
y(t) = cax(t), @) i (t) =Wai(s)ui (t) +Wri(s)yi(t)

Kei Kiri(t), 6
wherex(t) € Rt y(t) e RM, y(t) € R are the +Ked (1) + Keiri(1) ©
overall state, control and output vectors, respectively, with state space realization
and the matricedq € R™", by € R™M andcy € R™M

are block diagonal with blockAy,...,Ay, b1,...,bu Xpi(t) = FiXpi(t) + giti (t),
and cy,...,cq. The subscript "d" denotes a block- () —F _
diagonal matrix. The block matrisgA*, where Xii(t) = Fixei (t) +Gyi(t)
Ki (t) [KevimeKanri]T7
A - Ay @ (t) =& (1), xp (1), X (0,1 (0],
AeRPT=1 i (1) = KT (©)ea(t), @)

AL AL
ML - TEMM where (F,g;i) is an asymptotically stable system in

represents the interconnection pattern. controllable canonical form with the elements in the



last row equal to the coefficients of the characteris- 5. ERROR EQUATION

tic polynomial, xpi(t) € R~1, x¢(t) e R"1, R €

R-Dx(Mi-1) g e RI-1, With the controller in (5) and the parameter errors
AK;(t) = Ki(t) — K* the closed-loop interconnected

Following the results of (Narendra and Annaswamy, system becomes

1989) it can be shown that a constant control parame-
ter vector A .
i = A% + b1 [AK a + K1 — Kgiymi]

K [K;HKEITaKfI 7K ]T — M
+bi [Ugi + Z ai*jTXj]u
exists such that iK;(t) = K", the transfer function of )=

the isolated subsystem( = 0) (1) together with the yi =¢&'%, (10)
local controller matches that of the reference model T -

(3) exactly. wherecmi = [¢f 00, %i(t) = [, xy, x};] " and

The reference model based feedforward coordinated A +biK:ch b.K*T biK;T

local controller structureThe reference model based A= giK*-C.-T F +gK glK
feedforward coordinated control componeugi(t) is gle 0 p' E 7
structured as a linear combination of the statealbf ™ '
reference modelas follows B =[bl,g7.0, b =[b7,0,0"

Zni'()ZFiZmi'()+9iXm'() 8
j diZmij diXmj y

—Ymi

ugl ZKIJ Xf‘l'lJ ZKzu( )Zm'J() <:>

=1

where Kij(t), Kj(t) are the block time-varying
adaptation gain vectors, the block vectarsj(t) =

[zﬁqTij(t),...,zz{'iT(t)]T have components from equa-
tions Ko

Wy,

Fig. 1. Block diagram of closed loop system
Zg‘nij( FZ}mJ +glxmj
As follows from Fig. 1, the interconnection terms
2?":1ai"ijj that enter at the input to the plant are
zmij(t) - ﬁz";:ij(t) +gixm,—(t) (9) not available signals for input to the precompensator
Wpi. Therefore, like in (Gavel and Siljak, 1989), we
. . shall reflect the signal X;j to the input of the
andFy; = block-diagF), gai = block-diagg). closed-loop system u%mglalsjtan]dard transfer function
The difference between the control structure (8) and manipulations.
the DMRAC scheme in (Mirkin, 1999) is the use
also of the feedforward dynamic terﬁﬁ"‘:1 KT iZmij in

addition to the static terry ! ; KiT Ximj.

In doing this, we have introduced new subsystems into
the analysis, whose transfer functions Wg*(s) =
1—Wi(s) with mputszJ 1a,TxJ and outputgy;

The main difference from standard DMRAC schemes

used in decentralized adaptive control is defined by the

global componentg;(t). This is the main contribution Yai = (1—Wpi(9) Zaﬂ x;]

of our approachWe assume that every local controller

usesgthe reference trajectories of all subsystei®ach

a control law makes it possible to achietre zero

tracking error even though the coefficients are un- i
known in the interconnection matrices.

HMz

-3 Wi

Sincea ;T is a constanty,; can be rewritten as

The proposed structure with reference model coor-
dination for decentralized model reference adaptive "
control uses totally decentralized output feedback but «T «T

. . X — 5 Wil [Xi 11
centralized model reference feedforward and provides Yxi = z &j Xj J;a” biln; [Xj] (11)
zero tracking errors.

In this way the totally decentralized structure of the whereln, is identity matrix of orden; x n;.

current information update is saved. The state space realization of (11) is



Zij(t) = Fdinij (t) +0aixj (1), zdj(to) =0,
M
Yii = Z 3 x — Y &z, (12)
=
where
Zyij (t Z)]EIJ 7Zx|] )]

Kpid = block-dlaQK;T) & = Kpigai;
andFgi, gq; from (9).

With this modification the closed-loop systems from
(10) are now described by

=A% +Db [AKch +Kji r| Keiymi
+ugi+ Y aTLTR - S & 2],
San-
Yi= é;r)zh (13)

wherelL = “njxnjv Onjxnj—l’ Onjxnjfl]T

For K; = K the triplet (A;,b,&7) is a non-minimal
representation of the reference model (3)

Rni(t) = A (K} ) &mi + biri,

Ymi(t) = é%i;(mi(t% (14)
whereZmi = [Xhi, Xmpi Xmil | € R¥" 2 The equations

for the state errog (t) = %i(t) — Xmi(t) € R*~2 can be
expressed as

é = Al é + E)i [AKT 04 Kéé;jml

+Ug|+Z *TLTA Za” qu

2 (t) = Faizaj (t) + gail % (1),

& =Yi — Ymi = Ché. (15)
Now we introducezej(t) + Zmij(t) = zj(t). Then
from (15) we can write
T A
—A&+b T aLTe—b Y &z
Z ] IJZl j ij
+by [AK @ + Ugi
M
Z **TLTXmJ A'*jTZmij];
=1
Zeij(t) = FaiZeij(t) + gaiL T &) (1),
Zmij(t) = Fgizmij(t) + 9aiXm(t),
& =Yi — Ymi = Cnié, (16)
where
a { 31,, ifi# ],
) a; — KgiCmi, if i =j.

Using the control componenk; as given by (8), the
error equation (16) can be written as

M M
e=A&+b Yy afLTe b Y &z
=1 =1
Y
+biAKT (1) + by > BK] (t)Xm
=1
. M
+bi Y DK (t) Zmij,
=1
Zeij (t) = FaiZeij(t) + 0ail T & (1),
Zij(t) = FdiZmij(t) + GaiXmj(t),
& =Yi—Ymi=Chié, 17
whereAKij (t)= a;‘]* —Kij (t), AKzij(t) = Kzij(t) — él*] .

The composite system error can be written as

&(t) = Ange(t) + byA"e(t) — buA; Ze(t)
+byAAK 4 (t) w(t) + BaAKin(t)Xi(t)
+6dAKZ( t)zm(t),

Ze(t) = Faze(t) + Gael(t),
Zm(t) = FazZm(t) + GaXm(t).

e=y—Ym=Cre (18)

whereze = [z11...20 |- |20 - - - Zmml T+ the block
Vectorse, w, Xm, Zn have as componends , Xmi, Zmij,
respectively, and the matrice; ,, A", A;, AKy(t),
AKn(t), AKy(t) are block-matrices with parameter
components from (17), respectively.

6. STABILITY

We denote the solutions of the system (18) by
e(AKy, AKm(t),AK,(1))(t) and prove the following
theorem

Theorem Consider the closed-loop system consisting
of a plant described by (1) and (2), controllers with
control law given by (5). Then all the signals in the
system are bounded and the tracking erepfs — 0

ast — o (i=1,...,M), if we choose the local adaptive
laws as

AK; = —T 60
AKpij = —T 26 Xmj
DKyij = —T 316 Zmij- (19)

wherely =T% >0, [y =T% > 0 are constant
matrices.

Proof: Define the functiof as
M 5
V=SV, V=Y Va) (20)
i; kZl I

where

= &'Ra,



Vo = (AKj — K_li)Tril(AKi - K_li)a

M
Vai = 3 AK[T 5 0K,
j=1

M
Vi = 5 AKG 5 K,
=1
M
Vsi= ) 74 SiZeij, (21)
=1

with Il = M > 0 andKyj = —robi B SinceWn is

a strictly positive real (SPR) transfer function afgl

is a stable matri%, § satisfies the equations (bearing
in mind the Kalman-Yakubovich lemma)

F&iS +SFai = —Qa,

where both@i and Q;; are positive definite matrices
suitable dimensions.

(22)

Taking the time derivative df; with respect to (17),
we get

ZgijinZeij
Mo Mo

—ZZ ZsiEij& +ZZ ZiDij &, (23)
=1 =1

whereE;; = &b B andDj; = SgqiL.

Then the time derivative of from (20) can be written
in the compact form

V = ET[—Qd — rolf’df)df)g f’d —&-A*B;jr f’d
+|5d6dA*T]e+ 27 Ee— ZTdeZ— eTQde,

(24)

where

2Qq = blockdiadQi], Py = blockdiadR],
by = blockdiadhi] , E =E—D, Q,q=blockdiadQ,
where D and E are block diagonal matrices with
elementss;; andD;j, respectively.

SettingQ,q = gl (g, € R > 0) after completing the
squares in (24) and dropping negative terms, we obtain

V< —[rO/\min(Qd) - /\maX(A*TA*)] ||eH2
_[QZAmin(de) - Ama><(|§TE” He”Za

whereAnmin(.) andAmay(.) are the minimum and maxi-
mum eigenvalues. By selecting sufficiently large finite
valuesr andg; so that

(25)

ro> )\max(A*TA*))‘n:i%w(QOd)’
0 > Amax(E" E)Amin(Qza)
we getV < 0.

(26)

Further using standard arguments from the Lyapunov
theory (Narendra and Annaswamy, 1989), we con-
clude that the solution®(:)(t) are bounded and
&(t) — 0 ast — o and the proof is complete.

Remark The adaptive controller developed in this
paper can be extended to the case when the relative
degree of the plant exceeds unity. In our structure for
local adaptation, we can use Monopoli's augmented
error concept (Narendra and Annaswamy, 1989) or,
for example, parameter projection together with static
normalization (Wen and Soh, 1999).

7. SIMULATION RESULTS
In this simulation, Gavel and Siljak’s example (Gavel

and Siljak, 1989) of a fourth order system is used to
demonstrate the effectiveness of the proposed scheme.

i) = | _§ g+ |9 w-+] 5 0o
y1(t) =[1.0 0.1x4(t),

o) = § g a0+ [ ] v+ 3 0] w0,
yo(t) =[1.0 0.1)xx(t). 27)

In this case we have two second order subsystems and
itis required to design MRDAQ; andu, such that the
outputsyi(t), y2(t) track the corresponding outputs
ym (1), ymz(t) of the reference models

=[5 3]s +[ ] 0,

Ymi(t) = [0.5 0.5]xmi(t),

with the reference inputs(t) = sin(t).

(28)

Simulation resultare shown in Figures 2 — 5.
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Fig. 2. Tracking errors responses

In Fig. 2 we show the time responses of the tracking
errorse;, . Controller adaptive gain responses are
shown in Figures 3 — 5. As seen in the figures, the
output errors tend to zero in all cases, and the per-
formance of the proposed algorithms is considerably
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First local controller gain responses

ent reference models, but does not involve the ex-
change of output signals between the different subsys-
tems. Our scheme can be classifiecdatecentralized
adaptive control scheme with model coordinati¢in.
can not only guarantee closed-loop stability but also
asymptotic zero tracking errosghen uncertainties are
present in the subsystems and interconnections. Since
the reference model signals can be exchanged between
the subsystems off-line before the operation of the sys-
tem, this scheme fgasible.The local control laws are

the same as those found in the literature. The proposed
control structure can be viewed as an upgrade of exist-
ing schemes.Simulation results show the effectiveness
of our proposed scheme.
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Fig. 4. Second local controller gain responses

Fig. 5. Feedforward coordinated controller gain re-
sponses

better than that with the standard adaptive laws (Gavel
and Siljak, 1989).

8. CONCLUSION

In this paper, we have developed coordinated decen-
tralized output adaptive controllers for a class of large-
scale systems with unknown interconnected strengths.
We presented a modified DMRAC scheme which re-
quires an exchange of signals between the differ-



