
DECENTRALIZED ADAPTIVE CONTROL WITH
IMPROVED STEADY STATE PERFORMANCE

Boris M. Mirkin ∗,1 and Per-Olof Gutman∗

∗Faculty of Agricultural Engineering, Technion – Israel Institute
of Technology, Haifa 32000, Israel,

e-mail:bmirkin@tx.technion.ac.il, peo@tx.technion.ac.il

Abstract: In this paper we propose a new output decentralized model reference adaptive
control scheme to improve the steady state performance for a case large-scale systems
with unknown interconnection strengths as well as uncertainties in subsystem dynamics.
Additional model reference feedforward signals are introduced in the adaptive scheme.
The proposed scheme uses decentralized local output feedback with centralized model
reference coordination and provides zero tracking errors. In this way the totally decen-
tralized structure of the current information update is saved, since there is no exchange
of signals between the different subsystems. The simulation results have shown the
effectiveness of our proposed scheme.
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1. INTRODUCTION

In recent years there has been considerable interest
to study decentralized adaptive control of large-scale
dynamic systems. A variety of decentralized adaptive
techniques have been developed using theM-matrix
test in (Ioannou and Kokotovich, 1983), (Mirkin,
1986), a high-gain approach in (Gavel and Šiljak,
1989), (Mirkin and Choi, 1991), Morse’s dynamic cer-
tainty equivalence principle in (Ortega, 1996), adap-
tive backstepping in (Jain and Khorrami, 1997), and
parameter projection together with static normaliza-
tion for plants with stable dynamic interconnections in
(Wen and Soh, 1999). A specific class of decentralized
adaptive control is the decentralized model reference
adaptive control (DMRAC). Most works focus on the
state feedback case while less attention has been paid
to the adaptive decentralized output feedback prob-
lem. The latter problem is of great importance from a
theoretic point of view and is of great practical interest
for applications.

1 This research was supported by the Ministry of Absorption of
Israel

Unfortunately, the best that can be achieved in most
known model reference adaptive decentralized control
laws in the presence of parametric disturbances is the
convergence of errors to some bounded residual set.
The bounds of this set are unknowna priori and the
size depends on the global bound of the strength of the
unmodelled interconnections. Hence, such adaptive
schemes may be unsuitable for applications, and there
is a needs to develop new methods which would make
it possible to avoid this disadvantage.

For the state feedback case(each state of subsys-
temsxi can be locally measured), (Mirkin, 1995) and
(Mirkin, 1999) proposed a new decentralized infor-
mation structure with reference model coordination,
whereby coordinating information about the reference
signals of the other subsystems are used in all local
control laws. This structure guarantees zero residual
tracking errors.

The purpose of this paper is to obtain the first solution
to the more challenging problem of decentralizedout-
put asymptotic exactly trackingfor large-scale systems
with parametric uncertainties. Local control based on
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output measurements is a natural prerequisite for all
practical control problems.

The controller will be said to bedecentralized with
model coordinationif the only information available
to each subsystem controller is the corresponding sub-
system input and output and the states of all reference
models that are assumed to bea priori available to all
subsystems. In this way the totally decentralized struc-
ture of the current information update is saved, since
there is no exchange of signals between the different
subsystems.

2. SYSTEM MODEL

The class of large-scale plants withM subsystems and
parametric uncertainty that we shall consider in this
paper is of the form

ẋi(t) = Aixi(t)+biui(t)+
M

∑
j=1

Ai j x j(t),

yi(t) = cT
i xi(t), i = 1,2, . . . ,M, (1)

where for the i-th subsystemxi ∈Rni is the state vector
ui(t) ∈ R is the input control vector;yi(t) ∈ R is the
output vector, the constant matricesAi ∈ Rni×ni , bi ∈
Rni , Ai j ∈ Rni×n j , are not specified;∑M

j=1ni = n. The
following assumptions are made:

All subsystems are completely controllable. The signs
of bi are assumed to be positive. The matrices of
subsystemsAi ,bi and matrices of interactionAi j have
the form

Ai =




0 1 . . . 0
...

...
.. .

...
0 0 . . . 1
−ai

1 −ai
2 . . . −ai

ni


 ,

aT
i = [−ai

1, . . . ,−ai
ni
], bi = [0, . . . ,b∗i ],

Ai j = bia
∗T
i j , a∗Ti j = [ai j

1 , . . . ,ai j
n j

].

The composite system can be written as

ẋ(t) = Adx(t)+bdu(t)+bdA∗x(t),

y(t) = cdx(t), (2)

wherex(t) ∈ Rn1+...+nM ,u(t) ∈ RM, y(t) ∈ RM are the
overall state, control and output vectors, respectively,
and the matricesAd ∈Rn×n, bd ∈Rn×M andcd ∈Rn×M

are block diagonal with blocksA1, . . . ,AM, b1, . . . ,bM

and c1, . . . ,cM. The subscript "d" denotes a block-
diagonal matrix. The block matrixbdA∗, where

A∗ ∈ RM×n =




A′∗11 . . . A′∗1M
...

. ..
...

A′∗M1 . . . A′∗MM




represents the interconnection pattern.

3. PROBLEM FORMULATION

Let theM reference models be given by

ẋmi(t) = Amixmi(t)+bmir i(t),

ymi(t) = cT
mixi(t), i = 1, . . . ,M, (3)

where for the ith model, xmi(t) ∈ Rni is the state
vector, r i ∈ R is the input andymi ∈ R is the output.
The matricesAmi,bmi are known constant matrices of
appropriate dimensions.

Coordinates for each local model are chosen so that
the pairs(Ami,bmi) are in canonical form as in (1).
With this choice of coordinates, it is clear also, that
there exists constant unknown vectorsa∗i , a∗i j , b∗i so
thatAi j = bia∗Ti j , Ai = Ami +bia∗Ti , bmi = bib∗i .

Then thecontrol objectiveis to design decentralized
controllers for system (1) and (2) such that the closed-
loop system is stable and the outputsyi(t) track the
outputs of theM stable local reference modelsymi (3)
with the aim that

lim
t→∞

ei(t) = lim
t→∞

(yi(t)−ymi(t)) = 0,

i = 1,2, . . . ,M, (4)

i.e. we demand that the tracking errors converge to
zero asymptotically with time.

4. PROPOSED DECENTRALIZED ADAPTIVE
CONTROLLER

Each local controller consist of two loops, i.e. the
controller for theith subsystem is defined as the sum
of two components

ui(t) = uli (t)+ugi(t). (5)

The local feedback controller structureThe differ-
entiator free local feedback controller structure with
control componentuli (t) is defined as in conventional
MRAC schemes that have been widely analyzed in
the literature of centralized and decentralized adaptive
control (Narendra and Annaswamy, 1989)

uli (t) =Wpi(s)ui(t)+Wf i(s)yi(t)

+Keiei(t)+Kri r i(t), (6)

with state space realization

ẋpi(t) = Fixpi(t)+giui(t),

ẋf i(t) = Fixf i(t)+giyi(t),

Ki(t) = [Kei,K
T
pi,K

T
f i ,Kri ]T ,

ωi(t) = [ei(t),xT
pi(t),x

T
f i(t), r i(t)]T ,

uli (t) = KT
i (t)ωi(t), (7)

where (Fi ,gi) is an asymptotically stable system in
controllable canonical form with the elements in the



last row equal to the coefficients of the characteris-
tic polynomial, xpi(t) ∈ Rni−1, xf i(t) ∈ Rni−1, Fi ∈
R(ni−1)×(ni−1), gi ∈ Rni−1.

Following the results of (Narendra and Annaswamy,
1989) it can be shown that a constant control parame-
ter vector

K∗
i = [K∗

ei,K
∗T
pi ,K∗T

f i ,K∗
ri ]

T

exists such that ifKi(t) = K∗
i , the transfer function of

the isolated subsystem (Ai j = 0) (1) together with the
local controller matches that of the reference model
(3) exactly.

The reference model based feedforward coordinated
local controller structureThe reference model based
feedforward coordinated control componentugi(t) is
structured as a linear combination of the states ofall
reference modelsas follows

żmi j(t) = Fdizmi j(t)+gdixm j(t), (8)

ugi(t) =−
M

∑
j=1

KT
i j (t)xm j(t)+

M

∑
j=1

KT
zi j(t)zmi j(t),

where Ki j (t), Kzi j(t) are the block time-varying
adaptation gain vectors, the block vectorszmi j(t) =
[z1T

mi j(t), . . . ,z
n j T
mi j (t)]

T have components from equa-
tions

ż1
mi j(t) = Fiz

1
mi j(t)+gix

1
m j(t),

...

ż
n j
mi j(t) = Fiz

n j
mi j(t)+gix

n j
m j(t) (9)

andFdi = block-diag(Fi), gdi = block-diag(gi).

The difference between the control structure (8) and
the DMRAC scheme in (Mirkin, 1999) is the use
also of the feedforward dynamic term∑M

j=1KT
zi jzmi j in

addition to the static term∑M
j=1KT

i j xm j.

The main difference from standard DMRAC schemes
used in decentralized adaptive control is defined by the
global componentugi(t). This is the main contribution
of our approach.We assume that every local controller
usesthe reference trajectories of all subsystems. Such
a control law makes it possible to achievethe zero
tracking error even though the coefficients are un-
known in the interconnection matrices.

The proposed structure with reference model coor-
dination for decentralized model reference adaptive
control uses totally decentralized output feedback but
centralized model reference feedforward and provides
zero tracking errors.

In this way the totally decentralized structure of the
current information update is saved.

5. ERROR EQUATION

With the controller in (5) and the parameter errors
∆Ki(t) = Ki(t)− K∗

i the closed-loop interconnected
system becomes

˙̂xi = Âi x̂i + b̂i [∆KT
i ωi +K∗

ri r i −K∗
eiymi]

+b̄i [ugi +
M

∑
j=1

a∗Ti j x j ],

yi = ĉT
i x̂i , (10)

whereĉmi = [cT
i 0 0]T , x̂i(t) = [xT

i ,xT
pi,x

T
f i ]

T and

Âi =




Ai +biK
∗
eic

T
i biK

∗T
pi biK

∗T
f i

giK
∗
eic

T
i Fi +giK

∗T
pi giK

∗T
f i

gic
T
i 0 Fi


 ,

b̂i = [bT
i ,gT

i ,0]T , b̄i = [bT
i ,0,0]T .
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Fig. 1. Block diagram of closed loop system

As follows from Fig. 1, the interconnection terms
∑M

j=1a∗Ti j x j that enter at the input to the plant are
not available signals for input to the precompensator
Wpi. Therefore, like in (Gavel and Šiljak, 1989), we
shall reflect the signals∑M

j=1a∗Ti j x j to the input of the
closed-loop system using standard transfer function
manipulations.

In doing this, we have introduced new subsystems into
the analysis, whose transfer functions areŴ−1

pi (s) =
1−Wpi(s) with inputs∑M

j=1a∗Ti j x j and outputsyxi

yxi = (1−Wpi(s))[
M

∑
j=1

a∗Ti j x j ]

=
M

∑
j=1

a∗Ti j x j −
M

∑
j=1

Wpi(s)[a∗Ti j x j ].

Sincea∗Ti j is a constant,yxi can be rewritten as

yxi =
M

∑
j=1

a∗Ti j x j −
M

∑
j=1

a∗Ti j WpiIn j [x j ], (11)

whereIn j is identity matrix of ordern j ×n j .

The state space realization of (11) is



żxi j(t) = Fdizxi j(t)+gdix j(t), zxi j(t0) = 0,

yxi =
M

∑
j=1

a∗Ti j x j −
M

∑
j=1

â∗Ti j zxi j , (12)

where
zxi j(t) = [z1T

xi j(t), . . . ,z
n j T
xi j (t)]T

Kpid = block-diag(K∗T
pi ), â∗i j = KT

pida∗i j
andFdi, gdi from (9).

With this modification the closed-loop systems from
(10) are now described by

˙̂xi = Âi x̂i + b̂i [∆KT
i ωi +K∗

ri r i −K∗
eiymi

+ugi +
M

∑
j=1

a∗Ti j LT x̂ j −
M

∑
j=1

â∗Ti j zxi j ],

yi = ĉT
i x̂i , (13)

whereL = [In j×n j , 0n j×n j−1, 0n j×n j−1]
T

For Ki = K∗
i the triplet (Âi , b̂i , ĉT

i ) is a non-minimal
representation of the reference model (3)

˙̂xmi(t) = Âi(K∗
i )x̂mi + b̂ir i ,

ymi(t) = ĉT
mix̂mi(t), (14)

wherex̂mi = [xT
mi,x

T
mpi,x

T
m f i]

T ∈ R3ni−2. The equations

for the state error̂ei(t) = x̂i(t)− x̂mi(t)∈R3ni−2 can be
expressed as

˙̂ei = Âi êi + b̂i [∆KT
i ωi −K∗

eiĉ
T
mix̂mi

+ugi +
M

∑
j=1

a∗Ti j LT x̂ j −
M

∑
j=1

â∗Ti j zxi j ],

żxi j(t) = Fdizxi j(t)+gdiL
T x̂ j(t),

ei = yi −ymi = ĉT
miêi . (15)

Now we introducezei j(t) + zmi j(t) = zxi j(t). Then
from (15) we can write

˙̂ei = Âi êi + b̂i

M

∑
j=1

a∗Ti j LT êj − b̂i

M

∑
j=1

â∗Ti j zei j

+b̂i [∆KT
i ωi +ugi

+
M

∑
j=1

a∗∗Ti j LT x̂m j−
M

∑
j=1

â∗Ti j zmi j],

żei j(t) = Fdizei j(t)+gdiL
T êj(t),

żmi j(t) = Fdizmi j(t)+gdixm j(t),

ei = yi −ymi = ĉT
miêi , (16)

where

a∗∗i j =
{

a∗i j , if i 6= j,
a∗ii −K∗

eicmi, if i = j.

Using the control componentugi as given by (8), the
error equation (16) can be written as

˙̂ei = Âi êi + b̂i

M

∑
j=1

a∗Ti j LT êj − b̂i

M

∑
j=1

â∗Ti j zei j

+b̂i∆KT
i (t)ωi + b̂i

M

∑
j=1

∆KT
i j (t)xm j

+b̂i

M

∑
j=1

∆KT
zi j(t)zmi j,

żei j(t) = Fdizei j(t)+gdiL
T êj(t),

żmi j(t) = Fdizmi j(t)+gdixm j(t),

ei = yi −ymi = ĉT
miêi , (17)

where∆Ki j (t) = a∗∗i j −Ki j (t), ∆Kzi j(t) = Kzi j(t)− â∗i j .

The composite system error can be written as

ė(t) = Amde(t)+ b̂dA∗e(t)− b̂dA∗zze(t)

+b̂d∆Kd(t)ω(t)+ b̂d∆Km(t)xm(t)

+b̂d∆Kz(t)zm(t),

że(t) = F̂dze(t)+ ĝde(t),

żm(t) = F̂dzm(t)+ ĝdxm(t),

e= y−ym = ĉT
mdê (18)

whereze = [zT
e11. . .zT

e1M| . . . |zT
eM1 . . .zT

eMM]T , the block
vectorse,ω,xm,zm have as componentsêi ,ωi ,xmi,zmi j,
respectively, and the matricesA∗md, A∗, A∗z, ∆Kd(t),
∆Km(t), ∆Kz(t) are block-matrices with parameter
components from (17), respectively.

6. STABILITY

We denote the solutions of the system (18) by
e(∆Kd,∆Km(t),∆Kz(t))(t) and prove the following
theorem

Theorem Consider the closed-loop system consisting
of a plant described by (1) and (2), controllers with
control law given by (5). Then all the signals in the
system are bounded and the tracking errorsei(t)→ 0
ast→∞ (i = 1, . . . ,M), if we choose the local adaptive
laws as

∆K̇i =−Γ1ieiωi

∆K̇mi j =−Γ2ieixm j

∆K̇zi j =−Γ3ieizmi j. (19)

where Γ1i = Γ′1i > 0, Γ2i = Γ′2i > 0 are constant
matrices.

Proof: Define the functionV as

V =
M

∑
i=1

Vi , (Vi =
5

∑
k=1

Vki) (20)

where

V1i = êT
i P̂i êi ,



V2i = (∆Ki − K̄1i)TΓ−1
1i (∆Ki − K̄1i),

V3i =
M

∑
j=1

∆KT
i j Γ

−1
2i ∆Ki j ,

V4i =
M

∑
j=1

∆KT
zi jΓ

−1
3i ∆Kzi j,

V5i =
M

∑
j=1

zT
ei jSizei j, (21)

with ΓT
ki = Γki > 0 andK̄1i = −r0b̂i

T
P̂i . SinceWmi is

a strictly positive real (SPR) transfer function andFdi

is a stable matrix̂Pi , Si satisfies the equations (bearing
in mind the Kalman-Yakubovich lemma)

ÂT
i P̂i + P̂iÂi =−Q̂i ,

P̂i b̂i = ĉi ,

FT
di Si +SiFdi =−Qzi, (22)

where bothQ̂i andQzi are positive definite matrices
suitable dimensions.

Taking the time derivative ofV1i with respect to (17),
we get

V̇i =−êT
i Q̂i êi − êT

i r0P̂i b̂i b̂
T
i P̂i êi −

M

∑
j=1

zT
ei jQzizei j

−2
M

∑
j=1

zT
ei jEi j êi +2

M

∑
j=1

zT
ei jDi j êj , (23)

whereEi j = â∗i j b̂
T
i P̂i andDi j = SigdiL.

Then the time derivative ofV from (20) can be written
in the compact form

V̇ = eT [−Q̂d− r0P̂db̂db̂T
d P̂d +A∗b̂T

d P̂d (24)

+P̂db̂dA∗T ]e+2zT Ẽe−zTQ̂zdz−eTQ̂de,

where

2Q̂d = blockdiag[Q̂i ], P̂d = blockdiag[P̂i ],

b̂d = blockdiag[b̂i ] , Ẽ = Ê−D̂, Q̂zd= blockdiag[Q̂zi],
where D̂ and Ê are block diagonal matrices with
elementsEi j andDi j , respectively.

SettingQ̂zd = qzI (qz ∈ R1 > 0) after completing the
squares in (24) and dropping negative terms, we obtain

V̇ ≤−[r0λmin(Q̂d)−λmax(A∗TA∗)]‖e‖2

−[qzλmin(Q̂zd)−λmax(ẼT Ẽ)]‖e‖2, (25)

whereλmin(.) andλmax(.) are the minimum and maxi-
mum eigenvalues. By selecting sufficiently large finite
valuesr∗0 andq∗z so that

r∗0 > λmax(A∗TA∗)λ−1
min(Q̂0d),

q∗z > λmax(ẼT Ẽ)λ−1
min(Q̂zd) (26)

we getV̇ ≤ 0.

Further using standard arguments from the Lyapunov
theory (Narendra and Annaswamy, 1989), we con-
clude that the solutionse(·)(t) are bounded and
ei(t)→ 0 ast → ∞ and the proof is complete.

Remark The adaptive controller developed in this
paper can be extended to the case when the relative
degree of the plant exceeds unity. In our structure for
local adaptation, we can use Monopoli’s augmented
error concept (Narendra and Annaswamy, 1989) or,
for example, parameter projection together with static
normalization (Wen and Soh, 1999).

7. SIMULATION RESULTS

In this simulation, Gavel and Šiljak’s example (Gavel
and Šiljak, 1989) of a fourth order system is used to
demonstrate the effectiveness of the proposed scheme.

ẋ1(t) =
[

0 1
−1 0

]
x1(t)+

[
0
1

]
u1(t)+

[
0 0
2 0

]
x2(t),

y1(t) = [1.0 0.1]x1(t),

ẋ2(t) =
[

0 1
3 0

]
x2(t)+

[
0
1

]
u2(t)+

[
0 0

−2 0

]
x1(t),

y2(t) = [1.0 0.1]x2(t). (27)

In this case we have two second order subsystems and
it is required to design MRDACu1 andu2 such that the
outputsy1(t), y2(t) track the corresponding outputs
ym1(t), ym2(t) of the reference models

ẋmi(t) =
[

0 1
−1 −2

]
xmi(t)+

[
0
1

]
r i(t),

ymi(t) = [0.5 0.5]xmi(t), (28)

with the reference inputsr i(t) = sin(t).

Simulation resultsare shown in Figures 2 – 5.
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Fig. 2. Tracking errors responses

In Fig. 2 we show the time responses of the tracking
errorse1, e2. Controller adaptive gain responses are
shown in Figures 3 – 5. As seen in the figures, the
output errors tend to zero in all cases, and the per-
formance of the proposed algorithms is considerably
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Fig. 3. First local controller gain responses
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Fig. 4. Second local controller gain responses
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Fig. 5. Feedforward coordinated controller gain re-
sponses

better than that with the standard adaptive laws (Gavel
and Šiljak, 1989).

8. CONCLUSION

In this paper, we have developed coordinated decen-
tralized output adaptive controllers for a class of large-
scale systems with unknown interconnected strengths.
We presented a modified DMRAC scheme which re-
quires an exchange of signals between the differ-

ent reference models, but does not involve the ex-
change of output signals between the different subsys-
tems. Our scheme can be classified asa decentralized
adaptive control scheme with model coordination.It
can not only guarantee closed-loop stability but also
asymptotic zero tracking errorswhen uncertainties are
present in the subsystems and interconnections. Since
the reference model signals can be exchanged between
the subsystems off-line before the operation of the sys-
tem, this scheme isfeasible.The local control laws are
the same as those found in the literature. The proposed
control structure can be viewed as an upgrade of exist-
ing schemes.Simulation results show the effectiveness
of our proposed scheme.
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