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Abstract: This paper is concerned with the parametrization of all the decentralized
stabilizing controllers. The auxiliary diagonal system, which is defined by the
diagonal elements of Bezout factors, plays important roles in the parametrization
of decentralized controllers. This paper gives an explicit characterization of the
auxiliary system.
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1. INTRODUCTION

This paper is concerned with the parametrization
of all the decentralized stabilizing controllers.

For centralized control systems, the parametriza-
tion of all stabilizing controllers is proposed by
Youla et al. (1976). The parametrization has
brought us great advantages in progress of con-
trol theory. It clarifies the structure of stabiliz-
ing controllers and the restrictions on the perfor-
mance. It also helps the derivation of H∞ con-
trollers (Francis, 1987; Doyle et al., 1989; Glover
et al., 1991), and the derivation of the conditions
for the strong stabilization problem and the simul-
taneous stabilization problem (Vidyasagar, 1985),
etc. The parametrization helps to develop design
procedures not only for problems with frequency
domain specifications but also for those with time
domain specifications. Boyd and Barratt (1991)
propose to design a free parameter Q(s), which
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appears affinely in the parametrization, by a con-
vex optimization. It should be noted that the
state space representation of the Bezout factors
(Nett et al., 1984) has also achieved the progress
in control theory.

For the decentralized control systems, the de-
centralized Bezout identity and its stable fac-
tors, called “d-coprime factors,” have been pro-
posed (Gündeş and Desoer, 1990; Date and Chow,
1994). The decentralized Bezout identity has a
special structure and the diagonal parts of the
coprime factors represent the auxiliary diago-
nal system. With this auxiliary diagonal system,
parametrizations of decentralized controllers have
been also proposed. Although the decentralized
Bezout identity and the auxiliary diagonal system
play important roles in the parametrization of
decentralized controllers, the explicit characteri-
zation has not been given.

From the viewpoint of controller design, the char-
acterization of of auxiliary diagonal systems is
very important. Unlike the centralized case, there
are no practical methods to design decentralized
controllers based on the parametrization. The first
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reason is that there are constraints on the param-
eters. The second reason is that the connection
between d-coprime factors and their state space
representation is not clarified. Thus, there are no
computer-oriented computational methods for the
parametrization of decentralized controllers.

In this paper, a state space representation of de-
centralized stable factors is given and the charac-
teristics of the diagonal parts of the decentralized
stable factors, i.e. the auxiliary diagonal systems
are clarified.

Notation.
In this paper, static matrices are used in state
space representations of transfer function matri-
ces. And transfer function matrices themselves are
also used in this paper. For simplicity, s is dropped
for many cases. To avoid misunderstanding, ma-
trices A, B, C, D, E, F , I and O denote static ma-
trices (especially I and O denote an identity and a
zero matrices respectively) and the other matrices
denote transfer function matrices throughout this
paper.

2. PRELIMINARIES

This paper considers the decentralized control of
a linear time-invariant plant P (s) with n control
channels given by

ẋ = Ax +
n∑

i=1

Biui, (1)

yi = Cix +
n∑

j=1

Dijuj , (i = 1, . . . , n) (2)

where x, ui and yi are the state, the i-th local
inputs and the i-th local outputs of the plant,
respectively. In this paper, packed matrix forms
are used to represent realizations of systems, and
the above realizations are represented by

P (s) =




A B1 · · · Bn

C1

... Dij

Cn


 . (3)
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Fig. 1. Decentralized control system

The decentralized control problem is to find n
local controllers

Ki(s) =
[

Aki Bki

Cki Dki

]
, (i = 1, . . . , n) (4)

to stabilize the given plant.

If a decentralized controller K(s), defined as

K = diag{K1, K2, . . . , Kn}, (5)

stabilizes the given plant P (s), then, obviously
P (s) and K(s) have the doubly coprime factoriza-
tion (Vidyasagar, 1985). Furthermore, according
to the structure of the decentralized stabilizing
controllers, some of the doubly coprime factoriza-
tions can be given as

P = NM−1 = M̃−1Ñ , (6)

K = XY −1 = Ỹ −1X̃, (7)[
Ỹ −X̃

Ñ M̃

] [
M X

−N Y

]
=

[
I O
O I

]
(8)

where

X = diag {X1, X2, . . . , Xn}, (9)
Y = diag {Y1, Y2, . . . , Yn}, (10)

X̃ = diag {X̃1, X̃2, . . . , X̃n}, (11)

Ỹ = diag {Ỹ1, Ỹ2, . . . , Ỹn}. (12)

As the coprime factors of K(s) have the diagonal
structures (9)-(12), the next lemma holds.

Lemma 1. (Date and Chow, 1994) The coprime
factors in (8) also satisfy[

Ỹ −X̃

Ñd M̃d

] [
Md X

−Nd Y

]
=

[
I O
O I

]
, (13)

where N , M , Ñ and M̃ are partitioned according
to the sizes of inputs and outputs, and

Nd = diag {N11, N22, . . . , Nnn}, (14)
Md = diag {M11, M22, . . . , Mnn}, (15)

Ñd = diag {Ñ11, Ñ22, . . . , Ñnn}, (16)

M̃d = diag {M̃11, M̃22, . . . , M̃nn}. (17)

Date and Chow (1994) call this doubly coprime
factorization as “d-coprime factorization.” With
this doubly coprime factorization, they give a
parametrization of decentralized stabilizing con-
trollers, and show the connection to the other
attempts on parametrization (Manousiouthakis,
1989; Gündeş and Desoer, 1990; Özgüler, 1990).

To show the importance of Nd, Md, Ñd, M̃d, an-
other parametrization of decentralized controllers
is reviewed here.

Lemma 2. (Sebe, 1998) All the decentralized con-
trollers which stabilize the given plant P (s) are
parametrized as

(T̃ Ỹ − Q̃Ñd)−1(T̃ X̃ + Q̃M̃d), (18)



where
(

det(T̃ Ỹ − Q̃Ñd) �≡ 0,

T̃ + Q̃R ∈ U , T̃ , Q̃ ∈ D
)

, (19)

and

R = ÑMd − M̃Nd. (20)

(U denotes the set of unimodular matrices and D
denotes the set of stable block diagonal transfer
function matrices.)

Definition 3. For given P (s) and K(s), define the
auxiliary diagonal system Pd(s) as

Pd = NdM
−1
d (= M̃−1

d Ñd), (21)

where Nd, Md, Ñd, M̃d are defined in (14)-(17).

The auxiliary system Pd(s) plays an important
role in the parametrization of decentralized sta-
bilizing controllers given by Lemma 2. If the pa-
rameter T̃ is fixed as T̃ = I, then (18) becomes a
parametrization of decentralized controllers which
stabilize the auxiliary system Pd(s). And the con-
straint (19) becomes I + Q̃R ∈ U , which implies
decentralized controllers stabilize both the actual
system P (s) and the auxiliary system Pd(s) simul-
taneously. The constraint (19) is a condition for
simultaneous stabilization.

It is easy to see that

‖Q̃‖∞ < (‖R‖∞)−1 (22)

is a sufficient condition for I + Q̃R to be an
unimodular matrix, where ‖ · ‖∞ denote the H∞-
norm of (·). Thus, under the above condition
on Q̃, it would be able to tune Q̃ similarly to
the convex optimization methods for centralized
control systems. Note that this procedure designs
controllers for the auxiliary system Pd(s). The
auxiliary system Pd(s) would be important for
decentralized controller design.

Date and Chow (1994) shows that Pd(s) is
uniquely detemined by given P (s) and K(s). But
what is the system Pd(s)? Does Pd(s) have a real
meaning? The characteristics of the auxiliary sys-
tem Pd(s) has not been clarified yet. The reasons
are

• The auxiliary system Pd(s) is defined not
only by the given P (s), but also an initially
given decentralized controller K(s).

• The definition of Pd(s) is complicated, ex-
tracting the diagonal elements from the co-
prime factors and re-constructing the system
as a fraction of the elements.

The purpose of this paper is to reveal the property
of the auxiliary system Pd(s).

3. MAIN RESULTS

Definition 4. For given P (s) and K(s), define the
auxiliary systems Hi(s) as transfer functions from
ui to yi, where all the local loops are closed by
Ki(s) except the i-th loop. The block diagram of
Hi(s) is shown in Fig. 2. With the systems Hi(s)
(i = 1, . . . , n), let us define the system H(s) as

H = diag {H1, H2, . . . , Hn}. (23)

In most designs of decentralized control systems,
especially in design procedures called “indepen-
dent designs,” controllers are designed for “non-
interactive models” of plants, which consists of
decoupled subsystems. For these design proce-
dures, it is very important to evaluate the ef-
fect from the other loops to ensure the sta-
bility and/or the robust stability of closed-loop
systems. Thus, many classical and modern de-
sign procedures (Rosenbrock, 1969; Araki and
Nwokah, 1975; Grosdidier and Morari, 1986; Sko-
gestad and Morari, 1989) use Hi(s) to analyze
the (robust) stability of closed-loop systems. Fur-
thermore, these design procedures also use the
(robust) stability conditions on the difference be-
tween Hi(s) and Pii(s) as design specifications for
each local loop. With the additional design speci-
fications, designed controllers (robustly) stabilize
the given plant. The auxiliary system H(s) is also
important for designs of decentralized controllers.

Theorem 5. For a given plant P (s) and a decen-
tralized stabilizing controller K(s), let us define
the auxiliary systems Pd(s) and H(s) as (21) and
(23) respectively. Then,

Pd(s) = H(s). (24)

PROOF. See Appendix.
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Now, let us discuss about designs of decentralized
controllers based on the parametrization, and the
meaning of Theorem 5.

Date and Chow (1993) suggested the direction
of decentralized controller designs based on the
parametrization shown in Lemma 2. Theorem 5
shows that such a procedure designs local con-
trollers for Hi(s), which are defined by current
(already designed) decentralized controllers. In
other words, the design procedure based on the
parametrization would be an iterative design pro-
cedure, i.e., updating decentralized controllers it-
eratively. This iterative design procedure requires
the evaluation of the difference between the Hi(s)
defined by current controllers and Hi(s) defined
by updated controllers before the update. Unlike
the ordinary “independent design” procedures,
this evaluation is very difficult. Until now, in-
dependent and iterative design procedures are
proposed by Miyamoto and Vinnicombe (1997)
and Sebe (1998). But the relations between
these design procedures and the decentralized
parametrization are not clarified. The relations
will provide a deep insights into independent and
iterative design procedures.

4. NUMERICAL EXAMPLE

In this section, a numerical example is given to
verify the result. Let a given plant P (s) and a
decentralized (static) stabilizing controller K(s)
be

P (s) =




s − 3
(s − 1)(s − 2)

−1
(s − 1)(s − 2)

2
(s − 1)(s − 2)

s

(s − 1)(s − 2)




=




0 −1 1 0
2 3 0 1
1 0 0 0
0 1 0 0


 , (25)

K(s) =
[

1 0
0 4

]
. (26)

Assume the d-coprime factors of K(s) be

X̃ = X = diag{1, 4}, (27)

Ỹ = Y = diag{1, 1}. (28)

Then, the d-coprime factors of P (s), which satisfy
Bezout identity (8) are given by




M

N


 =




s2 + s + 2
s2 + 2s + 3

1
s2 + 2s + 3

−8
s2 + 2s + 3

s2 − 2s − 1
s2 + 2s + 3

s + 1
s2 + 2s + 3

−1
s2 + 2s + 3

2
s2 + 2s + 3

s + 1
s2 + 2s + 3




. (29)

Extracting the diagonal elements from the above
coprime factors, the elements of the auxiliary
diagonal system Pd(s) are given by

N11M
−1
11 =

s + 1
s2 + s + 2

, (30)

N22M
−1
22 =

s + 1
s2 − 2s − 1

. (31)

The systems (30) and (31) are identical to H1(s)
and H2(s) respectively.

5. CONCLUSION

An explicit characterization of auxiliary diagonal
systems which appears in the decentralized co-
prime factors is given in this paper. This char-
acterization will provide additional insights into
the parametrization of decentralized controllers.

The result also brings advantages in computa-
tional aspects, such as the reduction of compu-
tational complexity and the improvement of ac-
curacy.
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APPENDIX

Lemma 6. Assume state space representations of
the given systems are

K(s) =
[

Ak Bk

Ck Dk

]
, P (s) =

[
A B
C D

]
. (32)

And let a realization of the left coprime factors of
K(s) (= Ỹ −1X̃) be

[Ỹ X̃] =
[

Ak − FkCk Fk −(Bk − FkDk)
−Ck I Dk

]
,

(33)
where Ak − FkCk is a stable matrix. Then, a
realization of the right coprime factors of P (s)
which satisfy Bezout identity

Ỹ M + X̃N = I, (34)

is given by

[
M
N

]
=




A − BE−1DkC −BE−1Ck

BkẼ−1C Ak − BkDE−1Ck

−E−1DkC −E−1Ck

Ẽ−1C −DE−1Ck

BE−1

−Fk + BkDE−1

E−1

DE−1


 ,

(35)

where

E = I + DkD, Ẽ = I + DDk (36)

Note that this lemma is an extension of the result
in Nett et al. (1984).

Proof of Theorem 5 The uniqueness of the
auxiliary system Pd(s) is already shown by Date
and Chow (1994). The proof of Theorem 5 is
only to perform the calculation shown in Date
and Chow (1994) by state space representations.
For simplicity of presentation, we will develop the
results for a 2-channel system. Results for the n-
channel systems can be derive analogously, and
hence, will be omitted here.

Let us assume

K(s) =
[

Ak Bk

Ck Dk

]
=




Ak1 O Bk1 O
O Ak2 O Bk2

Ck1 O Dk1 O
O Ck2 O Dk2


 ,

(37)

P (s) =
[

A B
C D

]
=


 A B1 B2

C1 D11 D12

C2 D21 D22


 . (38)

Let us also assume

Fk = diag{Fk1, Fk2}, (39)

where Aki − FkiCki are stable matrices.

From Lemma 6, the right coprime factors of the
given P (s), which satisfy (8), can be given by (35).
Extracting the (1, 1) blocks from M and N , the
state space representation of M11 and N11 is

[
M11

N11

]
=




A − BE−1DkC −BE−1Ck

BkẼ−1C Ak − BkDE−1Ck

−[I O]E−1DkC −[I O]E−1Ck

[I O]Ẽ−1C −[I O]DE−1Ck

BE−1

[
I
O

]

−
[

Fk1

O

]
+ BkDE−1

[
I
O

]

[I O]E−1

[
I
O

]

[I O]DE−1

[
I
O

]




.

(40)



Then, the state space representation of N11M
−1
11

is given by

N11M
−1
11

=




A − B2E
−1
22 Dk2C2 O
∗ Ak1 − Fk1Ck1

Bk2Ẽ
−1
22 C2 O

C1 − D12E
−1
22 Dk2C2 O

−B2E
−1
22 Ck2 B

[
I

−E−1
22 Dk2D21

]

∗ ∗
Ak2 − Bk2D22E

−1
22 Ck2 Bk2Ẽ

−1
22 D21

−D12E
−1
22 Ck2 D11 − D12E

−1
22 Dk2D21


 ,

(41)

where

E22 = I + Dk2D22, Ẽ22 = I + D22Dk2. (42)

Neglecting the unobservable modes, (41) can be
reduced to

N11M
−1
11

=


 A − B2E

−1
22 Dk2C2 −B2E

−1
22 Ck2

Bk2Ẽ
−1
22 C2 Ak2 − Bk2D22E

−1
22 Ck2

C1 − D12E
−1
22 Dk2C2 −D12E

−1
22 Ck2

B1 − B2E
−1
22 Dk2D21

Bk2Ẽ
−1
22 D21

D11 − D12E
−1
22 Dk2D21


 .

(43)

It is easy to verify that the realization (43) is
identical to that of H1(s). Similarly, N22M

−1
22 =

H2(s) holds. �


