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Abstract: In a two-inertia motor system with flexible shaft, a torsional vibration is often 
generated, as a quick speed response close to the primary resonant frequency is required. 
This vibration makes it difficult to achieve a quick response of speed and disturbance 
rejection. This paper provides an autonomous pole assignment technique for three kinds 
of speed controllers (I-P, I-PD, and State feedback) using GAs(Genetic Algorithms) for a 
two-inertia motor system. Firstly, the optimal parameters are chosen using GAs in view 
of reducing overshoot and settling time, then those are used in computing the gains of 
each controller. Some simulation results verify the effectiveness of the proposed design. 
The proposed controller is expected to be the standard for controlling a two-inertia motor 
system with flexible shaft.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
A two-inertia motor system, such as an industrial 
rolling machine with a flexible shaft, has very low 
natural resonant frequency because of the long shaft 
and low stiffness between the motor and load. This 
makes it difficult to achieve the precise speed control 
due to torsional vibration. Hence, many engineers 
and scientists have focused attention on the reducing 
oscillation and the settling time in a two-inertia 
motor system. For example, a speed control using a 
PI or PID controller without an observer to estimate 
load torque was developed (Zhang and Furusho, 
2000). The Kalman filter and LQ-based speed 
controller for torsional vibration suppression was 
also developed (Zi and Sul, 1995). Vibration 
suppression, which used feedback from the imperfect 
derivative of the estimated torsion torque, was also 
studied (Sugiura and Hori, 1996). The auto-tuning of 
controller and observer parameters of a 2-DOF 
control system using genetic algorithms was 
developed (Ito, et al., 2001).  
 
In the authors’ previous work (Park, et al., 2001), the 
systematic analysis and speed controller design 
technique for a two-inertia motor system was 
described. Also included was a description of how to 
assign closed-loop poles of three controllers (I-P, I-
PD and State feedback) by using the new weighted 
ITAE(Integral of Time multiplied by the Absolute 
Error) performance index put a weight on overshoot, 
considering the fact that the overshoot easily causes 
vibration in a two-inertia motor system. However, 
numerous trials were necessary in order to choose the 
optimal parameters of a pole assignment controller. 
In order to overcome this problem, the auto-tuning 
technique of controller gains using genetic 
algorithms is presented in this paper. Some 

simulation results verify the effectiveness of the 
proposed design.  
 
 

2. TWO-INERTIA MOTOR SYSTEM 
 
In this section, we describe a model of a two-inertia 
motor system and the derivation of optimal controller 
gains by utilising a pole assigning technique for three 
kinds of controllers. The design criterion of each 
controller is to reduce the property that produces 
overshoot and oscillation by using a weighted ITAE 
performance index.  
  
 
2.1  Model of two-inertia motor system 
 
A motor and load coupled by a shaft with a finite 
stiffness is shown in Fig. 1, in which 
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Fig. 1. Two-inertia motor system model coupled by 
flexible shaft 
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Figure 2 is a simple block diagram representation of 
a two-inertia motor system. The friction term, which 
does not effect analysis accuracy, is neglected. 
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Fig. 2. Block diagram of a two-inertia system 
 
 
The transfer function from T  to  in Fig. 2 can 
be calculated as follows: 
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where  and  represent the anti-resonant 
frequency and the resonant frequency, respectively. 
The inertia ratio of load to motor, , and the 
resonance ratio, , are defined as follows: 
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2.2   Analysis and design of controllers for a two-

inertia motor system 
 
Figures 3 through 5 represent the structure of each 
speed control system using I-P, I-PD, and state 
feedback controllers, respectively. The closed-loop 
transfer function for I-P controller of Fig. 3 is given 
by  
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The closed-loop transfer function for the system 
shown in Fig. 4 using an I-PD controller is obtained 
as follows: 
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The closed loop transfer function for a state feedback 
controller as shown in Fig. 5 is given by 
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Fig. 3. Speed control system with I-P controller  
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Fig. 4. Speed control system with I-PD controller 
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Fig. 5. Speed controller system with state feedback 

controller 
 
 

The weighted ITAE performance index, which is 
used in this paper, is given by 
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A controller designed by using this weighted ITAE 
index reduces the overshoot or oscillation because 
the closed-loop system has a large damping property 
by weighting for overshoot. This technique assists us 
in selecting optimal location of poles without 
oscillation. Also, the minimum values of this ITAE 
index can easily be derived compared to those of the 
conventional ITAE index, which does not have 0.7 in 
an exponent (Park, et al., 2001). 
 
The closed loop transfer function can be arranged as 
follows: 
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where  and (for i=1,2) are the natural frequency 
and the damping ratio, respectively. Comparing (9) 
and each closed-loop transfer function, the gains of 
each controller and relation equation are obtained as 
follows: 
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I-P speed controller  
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I-PD speed controller 
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State feedback speed controller with integral 
 

MJK )(2 22111 ωςως +=                                           (19) 

M
a

I JK
2

2
2

2
1
ω

ωω
=                                                     (20) 

))()((
2 2

1
2

22
22

21122 ωωςωωωςω
ω

−−−= aa
a

MJ
K                 (21) 

)4( 2
02

2
2

2
1

2121
2
2

2
13 ω

ω

ωω
ωωςςωω −−++=

a
MJK               (22) 

2

2
2

2
1

2121
2
2

2
1

2

0
^

4
aω

ωω
ωωςςωωω −++=                           (23) 

 
If we choose K  as a positive constant and , 

, then the relation between  and  in a 
closed-loop system is given by 

2 12 ωω 〉
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3. CONTROLLER DESIGN USING GENETIC 
ALGORITHMS 

 
In order to find a minimum ITAE index value as 
described in the authors’ previous work (Park, et al., 
2001), the ITAE calculation for many cases must be 
done. To overcome this calculation burden, we are 
introducing an autonomous method which can be 

used to find optimal parameters of a controller using 
genetic algorithms. 
 
In this paper, poles are assigned to have identical real 
part as shown in (25) that gives optimal performance 
in terms of the settling time of transient response 
(Zhang and Furusho, 2000). The condition for these 
poles is given by 
 
                                                         (25) 2211 ςωςω −=−

 
 
3.1 Outline of the controller design 
 
In the proposed autonomous design, two individuals, 
that is,  and / , are optimised by using genetic 
algorithms. These are selected at random at first, then 
vary with values between 0.6 and 1.0 according to 
the genetic operation. In the genetic operation, an 
inverse of the ITAE value is evaluated as the fitness 
value, where the higher fitness results in the better 
solution. The best solution at each generation is 
successively reflected in the controller gains. 
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The overall sequence of steps needed to choose 
optimal parameters using genetic algorithms is 
shown in Fig. 6. 
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Fig. 6 The sequence of steps needed to choose 
optimal parameters 

 
 
The parameters of genetic algorithms used are shown 
in Table 1. 
 



 

     

Table 1  Parameters of genetic algorithms 
  

Item Condition
Population size 8 
Number of individuals 2 
Crossover probability 0.9 
Mutation probability 0.012 
Maximum generation number 30 

 
 
3.2 Choosing optimal parameters and their 

verification 
 
The specifications of the two-inertia motor system 
used in this study are shown in Table 2. 

 
Table 2  Mechanical parameters of a two-inertia 

motor system 
 

 Item Value 
Motor inertia [  ]2Kgm 510455.7 −×
Torsion stiffness [  ]/ radNm 0.05 
Resonant frequency [  ]/ srad 39.69 
Anti-resonant frequency [  ]/ srad 30 
Inertia ratio (K) 0.75 
Sampling time [  ]ms 2 

 
In order to verify the performance of auto-tuning 
using GAs, we compare the responses before training 
with responses after training for each controller. And 
we also compare the optimal parameters obtained by 
numerous trials for many  and /  with the 
optimal parameters obtained by using GAs. 
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I-P speed controller 

 
Table 3 shows optimal parameters, ς  and / , 
obtained with GAs(values without parentheses) and 
those(values within parentheses) obtained by 
numerous trials for several  and /  in an I-P 
control. Both cases have almost same values. We 
found the optimal parameters for several inertia 
ratios, respectively.  

1
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Table 3 Optimal parameters for I-P control 

 
K  0.5 0.75 1.0 1.5 2.0 Design 

condi-
tions R  1.23 1.32 1.41 1.58 1.73 

ITAE 6.132 5.046 4.570 4.435 4.108

Fitness 0.163 0.198 0.219 0.226 0.243

1ς  0.70 
(0.73) 

0.72 
(0.75) 

0.81 
(0.79) 

0.84 
(0.84)

0.87 
(0.84)

Selected 
para- 

Meters 
aωω /1  0.60 

(0.60) 
0.61 

(0.60) 
0.66 

(0.63) 
0.68 

(0.74)
0.84 

(0.91)

 
Using optimal parameters obtained by genetic 
operation, I/P gains are calculated using (10), (11).  
 
Figure 7 shows the responses before and after 
training with GAs, respectively. The overshoot and 
oscillation of the case after training when using GAs 
is less than that of the case before training. However, 

even though we selected optimal parameters for the 
proposed method, oscillation still occurred in the 
transient response in the I-P control. 
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                     parameters before training) 
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(b) =0.72, / =0.61(using optimal  1ς 1ω aω

      parameters after training) 
 
Fig. 7. Speed responses for I-P controller 
 
 
I-PD speed controller 
 
Table 4 shows optimal parameters obtained with 
GAs(values without parentheses) and those(values 
within parentheses) obtained by numerous trials for 
several  and /  in an I-PD control. Using 
optimal parameters obtained by genetic operation, 
I/P/D gains are calculated using (14), (15), (16). 

1ς 1ω aω

 
 

Table 4 Optimal parameters for I-PD control 
 

K  0.5 0.75 1.0 1.5 2.0 Design 
condi-
tions R  1.23 1.32 1.41 1.58 1.73 

ITAE 4.573 4.539 4.397 4.387 4.391

Fitness 0.220 0.227 0.228 0.228 0.243

1ς  0.926
(0.89)

0.903 
(0.90) 

0.892 
(0.90) 

0.906 
(0.91) 

0.912
(0.91)

Selected 
para- 

Meters 
aωω /1

0.812
(0.70)

0.826 
(0.72) 

0.754 
(0.73) 

0.766 
(0.75) 

0.760
(0.76)

 
In the case of the I-PD controller, the optimal values 
appear at almost the same values of ς  and /  
irrespective of the inertia ratio (Park, et al., 2001). 
For the inertia ratio of 0.75, ς  will be 0.903 and 

/ will be 0.826. Then from (24) and (25),  
will be 1.15  and  will be 0.65. The I/P/D gains 
are obtained as follows: 
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Similarly, both cases using the I-PD controller are 
plotted as shown in Fig. 8.  
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(a) =0.70, / =0.96(using random 1ς 1ω aω

      parameters before training)  
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(b) =0.90, / =0.83(using optimal  1ς 1ω aω

         parameters after training)  
 
Fig. 8. Speed responses for I-PD controller 
 
 
State feedback speed controller with integral 

 
In rhe state feedback controller, 2ω  is set as follows: 
 
           αωωω ×−= 2

1
2

2 2 a                                        (26) 
 
where α  is the positive constant to meet inequality 
(24). The constant, α , is selected based on the 
torsion amount. If α  is large, the torsion amount 
becomes large, and vice versa. Here, α  is set at 1.5. 
The optimal parameters are summarised in Table 5.  
 

Table 5 Optimal parameters for state  
feedback control 

 
K  0.5 0.75 1.0 1.5 2.0 Design 

condi-
tions R  1.23 1.32 1.41 1.58 1.73 

ITAE 2.976 2.964 2.937 2.917 2.902

Fitness 0.336 0.337 0.341 0.343 0.345

1ς  0.914 
(0.90) 

0.914 
(0.90) 

0.906 
(0.90) 

0.906
(0.90)

0.906
(0.90)

Selected 
para- 

meters 
aωω /1  0.958

(0.94) 
0.958
(0.94) 

0.948
(0.94) 

0.948
(0.94)

0.948
(0.94)

 
The optimal parameters are almost the same, 
irrespective of the inertia ratio. This result coincides 
with the result of the authors’ previous work (Park, et 

al., 2001). This implies that the controller can be 
designed irrespective of inertia ratio. The optimal 
parameters are obtained as follows: 
 

914.01 =ς , , , .  aωω 958.01 = aαωω 04.12 = ας /84.02 =

 
Then the gains of the state feedback controller from 
these values are obtained as follows: 
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In the state feedback controller design, it is also 
required to properly select observer gain, which 
affects the system response. The responses are shown 
in Fig. 9.    
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  (a) =0.81, / =0.93(using random  1ς 1ω aω

                     parameters before training)  
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(b) =0.91, / =0.96(using optimal  1ς 1ω aω

      parameters after training)  
 
Fig. 9. Speed responses for state feedback controller 
 
From figures 7 through 9, the responses which 
derived by using optimal parameters obtained by 
using GAs indicate much better performance than the 
one derived using parameters at random. From tables 
3 through 5, the optimal values obtained by using 
GAs nearly coincide with those of the authors’ 
previous work (Park, et al., 2001). This seems to 
indicate the effectiveness of GAs.  
 
Figure 10 shows the fitness values in the genetic 
process when each controller is used. From Fig. 10, 
we can see that the fitness values increase in small 
increments according to an increasing generation. 
This means that the procedure of using GAs performs 



 

     

well. Comparing the three controllers, the fitness 
value of the state feedback control is larger than that 
of any other control. This means that the state 
feedback controller has the best performance. 
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Fig. 10. Fitness values in the genetic process 
 
 
3.3 Comparison of three kinds of controllers 
 
In this section, to evaluate the three controllers for a 
two-inertia motor system with a very low inertia ratio, 
which easily causes the oscillation, the following 
simulations are carried out for two different inertia 
ratios 0.15 and 0.25, respectively. The rejection 
behaviour of disturbance is also evaluated. The 
specifications used are the same as shown in Table 2 
except for inertia ratio and torsion stiffness.  
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(a) Inertia ratio(K)=0.15, torsion stiffness = 0.01 
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(b) Inertia ratio(k)=0.25, torsion stiffness=0.017 

 
Fig. 11. Load speed responses when the inertia ratio 

is small. (K=0.15,0.25) 
 

In Fig. 11, we can see that I-P controller causes 
oscillation and larger oscillation for disturbance 
particularly. However, the state feedback controller 
gives us a robust performance without the oscillation 
even though the inertia ratio is small. It also has a 
fast recovery compared to the I-P controller on 
disturbance. A state feedback controller designed in 
this way provides us with the best performance 
compared with the I-P controller and I-PD controller, 
and it can also be designed irrespective of inertia 
ratio.  
 
 

4. CONCLUSION 
 

This paper described how to find the location of 
poles in order to reduce oscillation and settling time 
by using genetic algorithms for three speed 
controllers, namely, an I-P, an I-PD, and a state 
feedback controller in a two-inertia motor system. 
The controller that was designed based on the genetic 
algorithm allowed us to obtain the best system 
response which reduced oscillation and torsion. With 
the proposed auto-tuning of controller gains using 
genetic algorithms, we could resolve the problem of 
calculating an ITAE index value for many cases in 
order to select optimal parameters for the controllers. 
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