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Abstract: In Iterative Learning Control design, convergence speed along the iteration
domain is one of the most important performance factors. In this paper, we aim at
achieving fastest convergence speed (time-optimal) for a variety of nonlinear non-
affine Single-Input-Single-Output (SISO) plants, and focus on the family of the linear
type iterative learning controllers, including first-order ILC and higher-order ILC.
The control objective can be formulated as a kind of robust optimization: optimizing
the worst case performance in the presence of the interval uncertainties. To quantify
convergence speed, a learning performance index – Q-factor – is employed. The
optimal learning gain is then obtained by solving a Min-max problem. From the
robust optimal design, we also reach the following conclusion: under the same interval
uncertainty and applying the same min-max design which is robust and optimal, the
Q-factor of ILC sequences of lower order ILC is always less than that of higher order
ILC in terms of time-weighted norm. In the sequel, the first order ILC achieves the
fastest convergence speed in the iteration domain.
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1. INTRODUCTION

In near two decades ILC has been extensively studied,
achieves significant progress in both theory and appli-
cation, and becomes one of the most active fields in
intelligent control and system control (Arimoto, 1985;
Bien and Huh, 1989; Kuc et al., 1992; Longman and
Lo, 1997; Moore, 1998; Xu, 1997). The major objective
in learning control is to design a sequence of control
inputs, which ensure convergence of the tracking error
along the iteration domain, in the sequel improve the
time domain transient response. In this paper, we
pay attention to ILC convergence speed, an important
performance index in the learning control design. The
fastest convergence speed is always prefered. Thus the
control objective is not only to ensure the convergence
of the tracking error, but to optimize the convergence
speed along the iteration domain. To quantify the
convergence speed, a rigorous mathematical definition

of convergence speed for iterative processes – Q-factor,
is employed in the form of objective function. Because
of the existence of system uncertainties, ILC design
now becomes a kind of robust optimization (Min-
max), which optimizes the convergence speed while
considering the worst case system uncertainties. To
limit our discussion, a class of the nonlinear non-affine
SISO dynamic systems with interval uncertainties will
be considered. We will find a optimal learning gain
achieving the fastest convergence speed for a family of
linear-type ILC scheme including both first-order ILC
scheme and higher-order ILC schemes. The analysis
results shows that under the same interval uncertainty
and applying the same Min − max design which is
robust and optimal, the Q-factor of ILC sequences of
lower order ILC is always less than that of higher order
ILC in terms of the time-weighted norm. In the sequel,
the first order ILC achieves the fastest convergence
speed in the iteration domain.
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This paper is organized as follows. Section 2 introduces
some basic knowledge and concepts to be used in
subsequent sections. The learning control problem is
formulated in Section 3. Section 4 presents the opti-
mal learning gain design for linear-type ILC scheme.
Illustrative examples are provided in Section 5.

2. PRELIMINARY

In this section, the convergence speed definition for
the iteration sequences is first given, which defines
the objective function in learning control design. The
important Propositions in the convergence analysis of
linear-type ILC scheme are also provided.

Definition 1. Let xk ⊂ Rn be any convergent se-
quence with limit x�. Then the quantities

Qp{xk} =




0 if xk = x�, f.a.b.f.m.k

lim
k→∞

sup
||∆xk+1||
||∆xk||p ifxk �= x�, f.a.b.f.m.k

+∞ otherwise,

defined for all p ∈ [0, ∞), are the quotient convergence
factors, or Q-factors with respect to the norm ||·|| on
Rn. Here ∆xk

�
= xk − x∗ and f.a.b.f.n.m.k stands for

for all but finitely many k.

Definition 2. Let I1 and I2 be iterative processes
with the same limit point x�, and let Qp(I1,x�) and
Qp(I2,x�) be the corresponding Q-factors computed
in the same norm onRn. I1 isQ-faster than I2 if there
is a p ∈ [1,∞) such that Qp(I1,x�) < Qp(I2,x�).

Proposition 1. (Chen et al., 1998) Suppose a real pos-
itive series {cn}, n = 1, · · · satisfies

cn ≤ β1cn−1 + β2cn−2 + · · ·+ βNcn−N , ∀βj > 0

j = 1, · · · , N,

where
N∑

j=1

βj < 1, then lim
n→∞ cn = 0.

Proposition 2. When q =
2p

α2 + α1
, J = min

q∈R
max
gu∈D

|p−
qgu| reaches its minimum

J = |p|θ (1)

where θ
�
=

α2 − α1

α2 + α1
, 0 < θ < 1, D = [α1, α2], 0 <

α1 ≤ α2

Proof: The proof of Proposition 2 is given in Appendix
A.

3. PROBLEM FORMULATION

Consider the nonlinear dynamic system,

ẋ(t) = f(x(t), u(t), t) xi(0) = x0

y(t) = g(x(t), u(t), t), (2)

where t ∈ [0, T ], x(t) ∈ Rn, y(t) ∈ R, u(t) ∈ R, f(·)
and g(·) are partially unknown functions. The system
is satisfying the following assumptions.

Assumption 1: Denoting Ω1
�
= Rn × R × [0, T ],

0 < α1 ≤ ∂g

∂u
≤ α2 and || ∂g

∂x
|| ≤ Mx, ∀(x, u, t) ∈ Ω1.

Here α1, α2 are known constants and Mx is a known
constant.

Remark 1.
∂g

∂u
is equivalent to system direct feed-

through term and represents the system gain. 0 <

α1 ≤ ∂g

∂u
warrants no singularity in the system control.

∂g

∂u
∈ D = [α1, α2] indicates the presence of an

interval uncertainty in the system gain, which directly
affects the control performance. One of the objectives
of this paper is to present an appropriate learning
control design so as to achieve both robustness and
optimality.

Assumption 2: Nonlinear vector function f(x, u, t) is
global Lipschitz continuous with respect to x and u in
the set Ω1, i.e.,

‖f(x1, u1, t)− f(x2, u2, t)‖ ≤ f0[ ‖x1 − x2‖+ |u1 − u2|]

where f0 is an unknown Lipschitz constant.

Assumption 3: The initial resetting condition holds
for all iterations, i.e., yi(0) = yd(0), ∀i ∈ N . Here i
denotes the iteration number, i = 1, 2, · · ·. N denotes
the set of positive integers.

Assumption 4 For the given trajectory yd(t), there
exists a unique ud(t) such that

ẋd(t) = f(xd(t), ud(t), t)

yd(t) = g(xd(t), ud(t), t), ∀t ∈ [0, T ], (3)

The dynamics of the nonlinear system (2) is repeatable
over a finite time interval [0, T ]. The family of linear-
type ILC scheme is constructed as

ui+1(t) =
m∑

k=1

pkui−k+1 +
m∑

k=1

qk∆yi−k+1 (4)

where m is a finite constant, representing the order
of linear-type ILC scheme, pk and qk, ∀k = 1, · · · ,m
are learning gains. The objective in this paper is to
find optimal learning gains p∗k and q∗k such that the
convergence speed is the fastest, i.e. the Q-factor is
the smallest.



4. OPTIMAL LEARNING GAIN DESIGN FOR
LINEAR-TYPE ILC SCHEME

For dynamic system (2) with the linear-type ILC
scheme (4), it is well-known that if the following
conditions are satisfied,

m∑
k=1

pk = 1 (5)

m∑
k=1

|pk − qkgu| < 1, (6)

the ILC law (4) is convergent in the sense of time-
weighted norm.

By ignoring the dynamic impact, i.e., those ∆xi terms,
we have

|∆ui+1|λ = max
t∈[0, Tf ]

e−λt|ui+1(t)− ud(t)|

≤
m∑

k=1

|pk − qkgu| |∆ui−k+1|λ. (7)

The control input sequence ui(t) will converge to the
desired ud(t), as a sequence, yi(t) → yd(t) (Bien and
Huh, 1989). There may exist infinite learning number
of gains pk and qk satisfying (5) and (6). Denoting
the iterative process of m-th order ILC scheme as Im,
according to the definition of Q-factor,

Q1(Im, 0) = lim
i→∞

sup
|∆ui+1|λ
|∆ui|λ

≤ γ1 + γ2 lim
i→∞

sup
|∆ui−1|λ
|∆ui|λ + γ3 lim

i→∞
sup

|∆ui−2|λ
|∆ui|λ

+ · · ·+ γm lim
i→∞

sup
|∆ui−m+1|λ

|∆ui|λ
≤ γ1 + γ2

1
Q1(Im, 0)

+ γ3
1

Q1(Im, 0)2

+ · · ·+ γm
1

Q1(Im, 0)m−1
(8)

where γk = |pk − qkgu|, ∀k = 1, . . . ,m. Define the
following characteristic equation of m-th order ILC
scheme

Qm
1 (Im, 0)− γ1Q

m−1
1 (Im, 0)− · · · − γm = 0. (9)

The learning convergence speed will be determined by
one root of (9).

Lemma 1. Assume that τm ≥ τ2 · · · ≥ τ1 are roots of
the following equation

zm − γ1z
m−1 − . . .− γm−1z − γm = 0 (10)

subject to
m∑

k=1

γk < 1 and γk > 0, k = 1, · · · ,m, then

0 < τ1 < 1, τ2 < 0, |τm| > |τl|, ∀l = 1, · · · ,m− 1.

Proof: See Appendix B.

According to Lemma 1, there is only one positive
root τm of (9), which has the largest absolute value
among all m roots. Thus Q1(Im, 0) = τm which
determines the slowest convergence speed. The value
of τm depends on γk, ∀ k = 1, · · · ,m. The relationship
between τm and γk is given by the following lemma.

Lemma 2. Denote τm the only positive root of zm −
γ1z

m−1 − . . . − γm−1z − γm = 0 and τ̃m be the only
positive root of zm − γ̃1z

m−1 − . . .− γ̃m−1z − γ̃m = 0.
If γ̃i > γi, ∀k = 1, · · · ,m, then τ̃m > τm

Proof: See Appendix C.

Lemma 2 provides an important property: the smaller
a γk, the smaller the root τm. Thus in the ILC control
design, parameters pk and qk should be chosen to
minimize γk, ∀k = 1, · · · ,m in the presence of the
interval uncertainty gu ∈ D. It can be formulated as
the following min-max problem

Jm = min
(p1,...,pm−1)∈Rm−1

min
(q1,...,qm)∈Rm

max
gu∈D

τm. (11)

According to Proposition 2, min
qk∈R

max
gu∈D

γk = |pk|θ.
Since qk, k = 1, · · · ,m are independent design para-
meters, we can substitute the optimal design for each
γk into (10) and the resulting equation is

zm − |p1|θzm−1 − . . .−
m−1∑
k=1

|pk|θ = 0. (12)

After fixing all qk, the objective function Jm is

Jm = min
(p1,...,pm−1)∈Rm−1

τ̄m(p1, . . . , pm−1) (13)

where τ̄m is the positive root of the equation (12).

Instead of determining all optimal pk which is difficult,
we investigate the relationship between τ̄m and the

quantity κm =
m−1∑
k=1

|pk|θ+ |1−
m−1∑
k=1

pk|θ, which is given
in the following lemma.

Lemma 3. τ̄m, the only positive root of (12), will
increase (decrease) as κm increases (decreases).

Proof: See Appendix C.

According to Lemma 3, the optimization problem (13)
is equivalent to

J̄m = min
(p1,...,pm−1)∈Rm−1

m−1∑
k=1

|pk|+ |1−
m−1∑
k=1

pk|.(14)

The relationship of convergence speed for the family
of linear-type ILC schemes can be represented by the
following theorem



Theorem 1. Consider the dynamic system (2) with the
m-th order learning updating law (4), if (5) and (6)are
satisfied, then J̄m ≤ J̄m+1, ∀m ≥ 1.

Proof: We need to prove that the convergence speed
of the m-th order ILC scheme is faster that of the
(m+ 1)-th order ILC scheme for any m ≥ 1

The (m+ 1)-th order ILC scheme is expressed as

ui+1(t) =
m+1∑
k=1

p̃kui−k+1 +
m+1∑
k=1

q̃k∆yi−k+1, (15)

where
m+1∑
k=1

p̃k = 1. As discussed in the m-th order

ILC scheme, the convergence condition is
m+1∑
k=1

|p̃k −
q̃kd| < 1. The characteristic equation of (m+1)th ILC
can be written as

zm+1
m+1 − γ̃1z

m
m+1 − . . .− γ̃mzm+1 − γ̃m+1 = 0. (16)

According to Lemma 3,

J̄m+1

= min
(p̃1,p̃2,...,p̃m)∈Rm

m∑
k=1

|p̃k|θ + |1−
m∑

k=1

p̃k|

= min
(p̃1,p̃2,...,p̃m)∈Rm

m∑
k=1

|p̃k|+ |1−
m−1∑
k=1

p̃k − p̃m|

≥ min
(p̃1,p̃2,...,p̃m)∈Rm

m−1∑
k=1

|p̃k|+ |p̃m|+ |1−
m−1∑
k=1

p̃k| − |p̃m|

≥ min
(p̃1,p̃2,...,p̃m−1)∈Rm−1

m−1∑
k=1

|p̃k|+ |1−
m−1∑
k=1

p̃k| = J̄m

The fastest convergence speed of the m-th order ILC
scheme is faster than that of the (m+1)-th order ILC
scheme.

Obviously, the fastest convergence speed achieves
when m = 1 in the family of linear-type ILC schemes,
i.e., the first-order ILC scheme converges fastest in
the presence of the interval uncertainties. If m = 1,
Q1(I1, 0) = γ1 = |1 − q1gu|. From Proposition 2, The
optimal learning gain q1 = θ can be obtained directly.
Consequently, the optimal learning gains for the family
of linear-type ILC schemes, which ensures the fastest
convergence speed under the interval uncertainties are
p∗1 = 1, q∗1 = θ, p∗k = q∗k = 0, k = 2, · · · ,m.

5. ILLUSTRATIVE EXAMPLES

To clearly illustrate the effectiveness of robust optimal
design, a linear time-invariant dynamic system is first
considered with different gu. A nonlinear dynamic
system is also shown to demonstrate the superior
performance of robust optimal design.

5.1 Linear time-invariant dynamic system

Consider a linear time-invariant dynamic system

ẋ(t) =−3x(t)− u(t) x(0) = 0.5

y(t) = x(t) + du(t) (17)

where the known bound of d is D = [0.5, 2]. The target
trajectory is

yd(t) = πsinπt+
1

2− t
, t ∈ [0, 1.5]. (18)

Note yd(0) = y(0). Since d = gu �= 0, it is appropriate
to adopt the simplest first-order linear ILC scheme
(4). By considering the worst case d = α2 = 2, a
conservative learning gain q1 = 0.5, which satisfies
convergence condition |1 − q1d| < 1, is chosen. It is
easy to verify the convergence condition γ1 ≤ r = 0.75,
∀d ∈ D. Let us verify the effectiveness of the robust
optimal design using LTI dynamic system (17) with
four different d ∈ D.
According to the robust optimal design, the learning
gain is q1 = 0.8. From Fig. 1 we can see that the robust
optimal design outperforms the conservative one when
d = 0.5 (solid line), 1 (dashed line) and 1.5 (dotted
line), the only exception is d = 2 (dash-dotted line) in
which the conservative design achieves a “deadbeat”
as γ1 = 0. In the figure the thick lines correspond to
robust optimal design and plain lines correspond to
conservative design.
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Fig. 1. Learning convergence with robust optimal
design

Let us further compare the performance of second-
order ILC scheme and first-order ILC scheme. Since
the robust optimal design of I2 leads to the first order
ILC, we have to choose learning gains of I2 in a
heuristic manner. According to (Bien and Huh, 1989;
Chen et al., 1998), choosing p1 and p2 with opposite
values may give faster response. Thus we set p1 = 1.2,
p2 = −0.2, q1 = 0.5 and q2 = 0.4. It is easy to
verify that two convergence conditions (5) and (6) are
satisfied. Simulating the four cases with d = 0.5 (solid
line), 1 (dashed line) and 1.5 (dotted line) and d = 2
(dash-dotted line) , the results are demonstrated in
Fig. (2) with plain lines, and compared with the first-
order (thick lines).
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Fig. 2. Learning convergence profiles of 2nd-order ILC
vs first-order ILC

From Fig. 2, we can see the performance of robust
optimal design (first-order ILC scheme) outperforms
the second order ILC scheme in all four cases.

5.2 Nonlinear non-affine dynamic system

Consider the example below, which slightly differs
from (17) with a non-affine factor

ẋ(t) =−3x(t) + u(t) x(0) = 0.5

y(t) = x(t) + 2arctg(
1
2
tg

u

2
). (19)

It is easy to verify that gu ∈ [0.5, 2] ∀u ∈ R, the
system is global Lipschitz continuous.
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Fig. 3. Learning convergence with robust optimal
design vs conservative design for a nonlinear non-
affine dynamic system

Similar to analysis of LTI example, conservative design
q1 = 0.5 and robust optimal design q1 = 0.8 are
compared. The results are shown in Fig. (3) with
robust optimal design (solid line) and conservative
design (dot line). The results shows the superiority of
robust optimal design.

6. CONCLUSION

In this paper the family of linear-type ILC schemes,
from the first order to m-th order, were designed with

optimality under interval uncertainty. It was made
clear that lower order ILC always outperforms higher
order ILC schemes according to the newly introduced
Q-factor. At the same time, by using the technique of
robust optimization, the optimal gains for the family
of linear-type ILC scheme are also given.

APPENDIX A–PROOF OF PROPOSITION 2

Define z = p − qgu. Note that q is an unrestricted
variable, the feasible region of J = min

q∈R
max
gu∈D

|p− q1gu|
can be divided according to the range of p and q. Here
we show derivations for p > 0.

When p > 0, the objective function can be solved
according to the feasible region of parameter q, which
is divided into 3 intervals:

(1) q ∈ (−∞,
p

α2
] → z ≥ 0, ∀gu ∈ D.

Let Ja = min
q∈[0, p

α2
]
max
gu∈D

|p− qgu|. Since z ≥ 0,

Ja = min
q∈(−∞, p

α2
]
max
gu∈D

p− qgu = p(1− α1

α2
).

Ja reaches its minima when q =
p

α2
.

(2) q ∈ [
p

α1
, ∞) → z ≤ 0, ∀gu ∈ D.

Let Jb = min
q∈[ p

α1
,∞)

max
gu∈D

|p− qgu|. Since z ≤ 0,

Jb = min
q∈[ p

α1
,∞)

max
gu∈D

qgu − p = p(
α2

α1
− 1).

Jb reaches its minimal when q =
p

α1
.

(3) q ∈ [
p

α2
,

p

α1
]

Given a point q ∈ [
p

α2
,

p

α1
], the interval D can

be divided into two subintervals D = DL

⋃DR =
[α1,

p

q
]
⋃
[
p

q
, α2]. Corresponding to the given q

we have {
z ≥ 0, ∀gu ∈ DL;
z ≤ 0, ∀gu ∈ DR.

As discussed in (a) and (b),

max
gu∈DL

|p− qgu|= p− qα1

max
gu∈DR

|p− qgu|= qα2 − p.

The objective function is

Jc = min
q∈[ p

α2
, p

α1
]
max
gu∈D

|p− qgu|

= min
q∈[ p

α2
, p

α1
]
{p− qα1, qα2 − p}

=
p(α2 − α1)
α1 + α2

when q =
2p

α1 + α2
.



SinceJc ≤ Ja ≤ Jb, J reaches its minimum
p(α2 − α1)
α1 + α2

when q =
2p

α1 + α2
.

From the discussion above, J = p
α2 − α1

α2 + α1
and q =

2p
α2 + α1

when p > 0.

When p ≤ 0, analogously by solving the min-max
problem using the same technique we can reach J =

|p|α2 − α1

α2 + α1
and q =

2p
α2 + α1

when p ≤ 0.

Accordingly the optimal value of J equals to |p|α2 − α1

α2 + α1

when q =
2p

α2 + α1
.

APPENDIX B–PROOF OF LEMMA 1

Assume that τm ≥ τm−1 ≥ · · · ≥ τ1 are roots of
equation (10). From Descartes’ rule of signs (Albert,
1943, ), there is only one positive root of (10), which
implies τm > 0 and τm−1 < 0.
Let Pm(z) = zm − γ1z

m−1 − . . .− γm−1z − γm. Since

Pm(0) = −γm < 0 and Pm(1) = 1 −
m∑

k=1

γk > 0, the

only positive root τm is in the open interval (0, 1).
Therefore, there is only one root of equation (10)

in the interval (0, 1). Note that
m∑

l=1

τm = γ1 , since

τl < 0, ∀l = m− 1, · · · , 1, we have

m∑
l=1

τl = γ1 ≥ 0⇒ |τm| − |τm−1| − · · · − |τ1| = γ1

⇒ |τm| > |τl|, ∀l = m− 1, · · · , 1.
Clearly, τm is the only positive root of equation (10)
and has the largest absolute value.

APPENDIX C–PROOF OF LEMMA 2

Let Pm(z) = zm − γ1z
m−1 − · · · − γm−1z − γm and

P̃m(z) = zm − γ̃1z
m−1 − · · · − γ̃m−1z − γ̃m. Denote

τm and τ̃m to be positive roots of Pm(z) = 0 and
P̃m(z) = 0 respectively. Since 0 < γi < γ̃i < 1,
P̃m(0) < 0. ¿From Lemma 1, 0 < τm < 1 and
0 < τ̃m < 1. Clearly we have

P̃m(τm) = (τm
m − γ1τ

m−1
m − · · · − γm−1τm − γm)

+(γ1 − γ̃1)τm−1
m + (γ2 − γ̃2)τm−2

m + · · ·
+(γm − γ̃m)

= (γ1 − γ̃1)τm−1
m + (γ2 − γ̃2)τm−2

m + · · ·
+(γm − γ̃m) < 0

therefore τ̃m ∈ (τm, 1), i.e., τ̃m > τm.

APPENDIX D–PROOF OF LEMMA 3

Define κm =
m∑

k=1

|pk|θ and κ̃m =
m∑

k=1

|p̃k|θ, and assume

κm < κ̃m. Let τm and τ̃m be the only positive roots of
equation Pm(z) = zm − |p1|θzm−1 − · · · − |pm−1|θz −
|pm|θ = 0 and P̃m(z) = zm − |p̃1|θzm−1 − · · · −
|p̃m−1|θz − |p̃m|θ = 0 respectively. Since κm < κ̃m,
it can be deduced that |pm|− |p̃m| < |p̃1|− |p1|+ . . .+
|p̃m−1| − |pm−1|. From the fact that 0 < τm < 1, we
can obtain

P̃m(τm)

= τm
m − |p1|θτm−1

m − · · · − |pm−1|θτm − |pm|θ
+(|p1| − |p̃1|)θτm−1

m + · · ·+ (|pm−1| − |p̃m−1|)θτm

+(|pm| − |p̃m|)θ
= θ[(|p1| − |p̃1|)τm−1

m + · · ·+ (|pm−1| − |p̃m−1|)τm

+(|pm| − |p̃m|)]
< θ{[(|p1| − |p̃1|)τm−1

m + · · ·+ (|pm−1| − |p̃m−1|)τm]

−[(|p1| − |p̃1|) + · · ·+ (|pm−1| − |p̃m−1|)]}
< 0

Since P̃m(1) > 0, P̃m(τm) < 0, it can be derived that
τm < τ̃m < 1, i.e., κm < κ̃m ⇒ τm < τ̃m.
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