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Abstract: This paper extends the results previously obtained for trajectory tracking of
unknown plants using recurrent neural networks. The proposed controller structure
is composed of a neural identifier and a control law defined by using the inverse
optimal control approach, which has been improved so that less inputs than states
are needed. The proposed new control scheme is applied to the control a robotic
manipulator model.
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1. INTRODUCTION

Since the seminal paper [Narendra and Parthasarathy,
1990], there has been intensive studies in apply-
ing neural networks to identification and control of
nonlinear systems. Lately, dynamic neural networks
were developed, enabling more efficient modeling of
complex dynamics [Poznyak et al., 1999]. One recent
book, [Rovitahkis and Christodoulou, 2000], has re-
viewed a broad spectrum of applications of dynamic
neural networks for nonlinear systems identifica-
tion and control. In [Rovitahkis and Christodoulou,
2000] on-line learning is employed, for adaptive
identification and control, where stability of closed-
loop systems is analyzed using the Lyapunov func-
tion method. In [Rovitahkis and Christodoulou,
2000], the trajectory tracking problem is studied,
by means of reducing the system to a linear model

following problem, in which an application to DC
electric motors is discussed.

On the other hand, control methods that are ap-
plicable to general nonlinear systems have seen
rapid development since the early 1980’s. Main ap-
proaches include, for example, the use of differen-
tial geometry theory [Isidori, 1995]. Recently, the
passivity approach has generated increasing interest
for synthesizing control laws, also for general nonlin-
ear systems [Hill and Moylan,1996]. An important
problem in this approach is how to achieve robust
nonlinear control in the presence of unmodelled dy-
namics and external disturbances. In this direction,
worth mentioning is the so-called H∞ nonlinear
control approach [Basar and Bernhard, 1995]. One
major difficulty with this approach today, alongside
its possible system structural instability, seems to
be the requirement of solving some resulting par-
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tial differential equations. In order to alleviate this
computational problem, the so-called inverse opti-
mal control technique was recently developed, based
on the input-to-state stability concept [Krstic and
Deng, 1998].

A control law for generating chaos in a dynamic
neural network was designed in [Sanchez et al.,
2001(a)]. In [Sanchez et al., 2001 (b)] and [Sanchez
et al., 2001 (c)], this methodology was modified for
stabilization and trajectory tracking of an unknown
chaotic dynamical system. The proposed adaptive
control scheme is composed of a dynamic neural
identifier and a controller, where the former is used
to build an on-line model for the unknown plant
and the latter, to ensure the unknown plant to
track the reference trajectory. In this paper, we
further improve the design by using less inputs
than states in the control. The approach is based
on the methodology developed in [Sanchez et al.,
2001(b)] and [Sanchez et al., 2001(c)], in which
the control law is optimal with respect to a well-
defined cost functional. Trajectory tracking for a
robotic manipulator model is demonstrated as an
application example.

2. MATHEMATICAL PRELIMINARIES

2.1 A High-Order Recurrent Neural Network

In [Kosmatopoulos et al.,1997], high-order recurrent
neural networks (HORNN) are defined as

ẋi = −aixi +
LX
k=1

wik

Y
j∈Ik

y
dj(k)

j
, i = 1, ..., n (1)

where xi is the ith neuron state, L is the number of
high-order connections, {I1 , I2 , ..., IL} is a collection
of non-ordered subsets of {1, 2, ...,m + n}, ai > 0,
w
ik
are the adjustable weights of the neural network,

dj (k) are nonnegative integers, and y is a vector

defined as y =
£
y1 , .., yn , yn+1 , ..., yn+m

¤>
= [S(x1), ..., S(xn), S(u1), ..., S(um)]

>,with u =
[u1 , u2 , ..., um ]

> being the input to the neural net-
work, and S(·) is a smooth sigmoid function formu-
lated by S(x) = 1

1+exp(−βx) + ε. For the sigmoid, β
is a positive constant and ε is a small positive real
number. Here, S(x) ∈ [ε, ε+ 1].
Clearly, system (1) allows the inclusion of high-order
terms.By defining a new vector,

z(x, u) = [z1(x, u), ..., zL(x, u)]
>

=
hQ

j∈I1 y
dj(1)

j
, ...,

Q
j∈IL y

dj(L)

j

i>
system (1)

can be rewritten as

ẋi =−aixi +
LX
k=1

wikzk(x, u), i = 1, ..., n

ẋ
i
=−a

i
x
i
+ w>

i
z
i
(x, u), i = 1, ..., n (2)

where wi = [wi,1 ...wi,L ]
>

In this paper, we assume that the input enters
the neural network directly. We are particularly
interested in less inputs than states, since this is a
more efficient structure. For this purpose, we rewrite
system (1) as

ẋ
i
= −a

i
x
i
+ w>

i
z
i
(x) +Ωu

i
, Ω ∈ Rnxm (3)

We reformulate (2) in a matrix form and obtain

ẋ = Ax+Wz(x) +Ωu (4)

where x ∈ <n, W ∗ ∈ <n×L, z(x) ∈ <L, u ∈ <n, and
A = −λI, with λ > 0. In the following, we use the
following slight modification of the HORNN:

ẋ = Ax+WΓz(x) +Ωu

where Γ ∈ <L×L is a diagonal matrix defined by

Γ = diag
©
γ1, γ2, ..., γL−1, γL

ª

3. MODELLING THE UNKNOWN PLANT

The unknown nonlinear plant is modeled as

xp = fp(xp) + gp(xp)u (5)

We propose to modelize the unknown nonlinear
plant by a dynamic neural network, in the following
form:

ẋp = ẋ+ wper (6)

=Ax+W ∗Γz(x) + (x− xp) +Ωu

where xp , x, z(x) ∈ <n, W ∗,Γ ∈ <n×n, u ∈ <mx1,
Ω ∈ Rnxm, and wper = x − xp represents the
modelling error.W ∗ are the unknown values of the
neural network which minimize the modelling error.



4. TRAJECTORY TRACKING ANALYSIS

We proceed to analize the tracking error between
the unknown plant modeled by (6) and the reference
trajectory given by

ẋr = fr(xr, ur), xr ∈ <n (7)

we define the tracking error and its time derivative
as

e= xp − xr (8)

ė= ẋ
p − ẋr (9)

=Ax+W ∗Γz(x) + wper
+Ωu− fr(xr , ur)

Now, we proceed to add and subtract the terms
ŴΓz(xr), Ae, and Ωαr (t, Ŵ ), so that

ė=Ae+W ∗Γz(x) +Ωu+

(−fr(xr , ur) +Axr + ŴΓz(xr) + xr − xp
+Ωα

r
(t, Ŵ ))−Ae− ŴΓz(x

r
) (10)

−Ωαr(t, Ŵ )−Axr − xr + x+Ax

Note that the plant will track the reference signal
even in the presence of uncertainties, if there exists
a function α

r(t, Ŵ ) such that

α
r
(t, Ŵ ) =

¡
ΩTΩ

¢−1
ΩT (f

r
(x

r
, u

r
)−Ax

r
(11)

−ŴΓz(xr)− (xr − xp))

Next, assume that (11) holds, and define W̃ =
W ∗ − Ŵ , ũ = u − αr(t, Ŵ ), so that (10) is
reduced to

ė=Ae+ W̃Γz(x) + ŴΓ (z(x)− z(xr)) (12)

+(A+ I)(x− xr)−Ae+Ωũ
=Ae+ W̃Γz(x) + ŴΓ(z(x)− z(xp)
+z(xp)− z(xr))
+(A+ I)(x− xp + xp − xr)−Ae+Ωũ

Then, by defining ũ = u1 + u2(13)

with

u1 =
¡
ΩTΩ

¢−1
ΩT (−ŴΓ(z(x)− z(xp)) (14)

−(A+ I)(x− xp))
Equation (12) reduces to

ė=Ae+ W̃Γz(x) + ŴΓz(xp)− z(xr) (15)

+(A+ I)(xp − xr)−Ae+Ωu2
Moreover, by taking into account that e = xp − xr,
equation (15) reduces to the following equation:

ė= (A+ I)e+ W̃Γz(x) (16)

+ŴΓ(z(xp)− z(xr)) +Ωu2
Therefore, the tracking problem reduces to a sta-
bilization problem for the error dynamics (16). To
solve this problem, we next apply the inverse opti-
mal control approach.

5. TRACKING ERROR STABILIZATION

Once (16) is obtained, we consider its stabilization.
Note that (e, W̃ ) = (0, 0) is an equilibrium point of
the undisturbed autonomous system. For stability
analysis, we define the candidate Lyapunov function
as

V =
1

2
kek2 + 1

2
tr
n
W̃>W̃

o
(17)

Its time derivative, along the trayectories of (16), is

V̇ = e>(A+ I)e+ e>W̃Γz(x) (18)

+e>ŴΓ (z(xp)− z(xr ))

+e>Ωu2 + tr
½ .

W̃
>
W̃

¾
As in [Rovitahkis and Christodoulou, 2000], we
propose the following learning law:

tr

½ .

W̃
>
W̃

¾
=−e>W̃Γz(x) (19)

·
ŵi,j = ei(γjz(xj )) (20)

i= 1, 2, ..., n, j = 1, 2, ..., L.

Then, we substitute (19) into (18), to obtain

V̇ =−(λ− 1)e>e (21)

+e>ŴΓ (z(xp)− z(xr ))
+e>Ωu2

L
f
V =−(λ− 1)e>e+ e>ŴΓ (z(xp)− z(xr))

L
gV = e

>Ω

Next, we consider the following inequality, proved
in [Poznyak, et al. 1999]:

X>Y + Y >X ≤ X>ΛX + Y >Λ
−1
Y (22)



which holds for all matrices X,Y ∈ <nxk and
Λ ∈ <nxn with Λ = Λ> > 0. Applying it to the
second term of (21), we obtain

V̇ ≤−(λ− 1)e>e+ 1
2
e>e

+
1

2
kŴk2kΓk2kz(xp)− z(xr)k

2

+ e>Ωu2

where kŴk, kΓk are the Euclidean norm of Ŵ ,
Γ, respectively. Taking in account xp = e + xr and
denoting φ

z
= z(x

p
)−z(x

r
) = z(e+xr)−z(xr), we

have

V̇ ≤−(λ− 1)e>e+ 1
2
e>e (23)

+
1

2
L
2

φz
kŴk2kΓk2 kek2

+e>Ωu2
V̇ ≤−(λ− 1)e>e

+e>
µ
1

2
+
1

2
L
2

φz
kŴk2kΓk2

¶
e

+e>Ωu2

where L
2

φz
is the Lipschitz constant of φ

z
.

To this end, we define the following control law:

u2 =−µ(ΩTΩ)−1ΩT (1 + L2

φz
kŴk2kΓk2)e (24)

µ>
1

2

,−β
³
R(e, Ŵ )

´−1 ¡
LgV

¢>
β
³
R(e, Ŵ )

´−1
= µ

¡
ΩTΩ

¢−1
ΩT

³
1 + L

2

φz
kŴk2kΓk2

´
with scalars R(e, Ŵ ) > 0,β > 0. Now, substituting
(24) in (23) yields

V̇ =−(λ− 1)e>e (25)

−
µ
µ− 1

2

¶
e>
³
1 + L

2

φz
kŴk2kΓk2

´
e

< 0, ∀e, Ŵ 6= 0

Finally, the control law, which affects the plant and
the neural netwok, is given by

u= ũ+ α
r (t, Ŵ ) (26)

=
¡
ΩTΩ

¢−1
ΩT (−ŴΓ(z(x)− z(xp))

−(A+ I)(x− xp)− µ
³
1 + L

2

φz
kŴk2kΓk2

´
e

+fr(xr , ur )−Axr − ŴΓz(xr )− xr + xp)

This control law gives asymptotic stability of the
error dynamics and thus ensures the tracking to the
reference signal.

6. COST FUNCTIONAL OPTIMIZATION

Once the problem of finding the control control law
(24) is formulated based on the inverse optimal con-
trol approach, which stabilizes (16), we can proceed
to formulate a cost functional defined by

J(ũ) = lim
t→∞ (27)

2βV +

tZ
0

³
l(e, Ŵ ) + u>2 R(e, Ŵ )u2

´
dτ

where the Lyapunov function solves the Hamilton-
Jacobi-Bellman family of partial derivative equa-
tions parametrized with β > 0 as follows:

l(e, Ŵ ) + 2βLfV(28)

−β2LgV R(e, Ŵ )−1LgV > = 0

Note that 2βV in (27) is bounded when t → ∞,
since by (25) V is decreasing and bounded from
below by V (0). Then, lim

t→∞ V (t) exists and is finite.

Recall that in [Krstic and Deng.,1998], we need
l(e, Ŵ ) to be positive define and radially unbounded
with respect to e. Here, from (28) we have

l(e, Ŵ ) =−2βLfV (29)

+β2LgV R(e, Ŵ )
−1LgV >

Substituting (24) into (29) and then applying (22)
to the second term on the right side of LfV , we
have

l(e, Ŵ )≥ (λ− 1)kek2

+(µ− 1)
³
1 + L2φ kΓk2 kWk2

´
kek2

Since we select λ > 1 and µ > 1, we know
that l(e, Ŵ ) satisfies the condition of being positive
definite and radially unbounded. Hence, (27) is a
cost functional. It is easy to verify that, in (27),

l(e, Ŵ , Ŵ1) + ũ
>R(e, Ŵ , Ŵ1)ũ = −2βV̇

with optimal value J∗ = 2βV (0). This is achieved
by the control law (24).



7. SIMULATION RESULTS ON ROBOTIC
TRAJECTORY TRACKING

In order to test the applicability of the proposed
control scheme, we consider the trajectory tracking
problem for a robot manipulator model.

In the absence of friction, the dynamics of a 2-link
rigid robot arm with torque control input can be
written as

D (q) q̈ + C (q, q̇) q̇ +G (q) = τ

where q=
£
q1 q2

¤T
, q̇ =

£
q̇1 q̇2

¤T
, q̈ =

£
q̈1 q̈2

¤T
D (q) =

·
D11 D12
D21 D22

¸
,

D11 =m1l
2
c1

+m2

¡
l21 + l

2
c2 + 2l1lc2 cos (q2)

¢
+ I1 + I2

D12 =m2

¡
l2c2 + l1lc2 cos (q2)

¢
+ I2

D21 =D12 D22 = m2l
2
c2 + I2

C =

·−2m2l1lc2q̇2sen (q2) −m2l1lc2q̇2sen (q2)
m2l1lc2q̇1sen (q2) 0

¸
G (q) =

·
G11
G21

¸
τ =

£
τ1 τ2

¤T
G11 = m1glc1 cos(q1)

+m2g (l1 cos(q1) + lc2 cos(q1 + q2))

G21 = m2glc2 cos(q1 + q2)

q1, q2→Angular position of link i

l1, l2→ Length of link i

lc1, lc2→Position of the center of gravity of link i

I1, I2→ Inertia of link i

g→Gravitational acceleration (9.81 m/s2)

where D (q) is a positive definite and symmetric
inertia matrix, C (q, q̇) is the matrix containing the
effect of centripedal and Coriolis forces, and G (q)
contains the gravitational torques.

We consider the example studied in [Llama et al.,
2000], here as the nonlinear unknown plant. We try
to force this manipulator to track a reference signal
given by

qr1 = 1.57+0.78(1− e−2t
3

)+0.17(1− e−2t3) sinw1t
qr2 = 1.57+1.04(1−e−1.8t

3

)+2.18(1−e−1.8t3) sinw2t
where w1 and w2 are the frequencies of the desired
trajectories for link 1 and link 2, respectively. This
trajectory requires large velocity and acceleration

from the manipulator. In the simulation, w1 = 15
rad/s and w2 = 3.5 rad/s were used. Furthermore,
we consider a torque pertubation applied to link 1
as a impulse train function of amplitude 10 N m. We
select the initial position at q1 = −90◦ and q2 = 0◦,
which correspond to the inferior equilibrium point.
The parameters for this robot model used in [Llama
et al., 2000] are the following:

m1 = 23.902 kg. m2 = 1.285 kg.

l1 = 0.45 m. l2 = 0.45 m.

lc1 = 0.091 m. lc2 = 0.048 m.

I1 = 1.226 kg.m2 I2 = 0.093 kg.m2

We use the following dynamical neural network to
modelize the same system:

ẋp =Ax+W
∗Γz(x) + (x− xp) +Ωu

with A=−150I ,Γ = 0.5I, k = 0.45, I ∈ R4x4

z(x) = tanh(kx) ,Ω =

µ
0 0 0 1
0 0 1 0

¶T
For the control law (26) , we select µ = 85. The
time evolution for the angles and torques applied
to the links are shown in Figs. 1 and 2. As can be
seen, trajectory tracking is successful. The applied
torques are below of those obtained in [Llama et al.,
2000], which constitutes a reference workbench.
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Fig. 1. Time evolution for the angular position

8. CONCLUSIONS

We have extended the designed previously devel-
oped in [Sanchez et al., 2001 (b)] and [Sanchez et
al., 2001 (c)] for the adaptive trajectory tracking
control problem, based on the inverse optimal con-
trol approach. We have further relaxed the condition
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Fig. 2. Applied torques
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Fig. 4. Tracking error

of having the same number of inputs and states,
so as to allow for less inputs than states, in the
control law. The proposed scheme consists of a neu-
ral identifier and a controller, in which the former
builds an on-line model of the unknown plant and
the latter is optimal with respect to a meaningful
cost functional. A robot model is used to verify
the design for trajectory tracking, with satisfactory
performance, where the plant model is assumed to
be unknown. Research will continue to implement
the scheme in real time and to further test it in a
laboratory environment.
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