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Abstract: Four fuzzy logic fault isolation methods suitable for implementation in smart 
final control elements are proposed. The methods are suited for real time diagnostics 
applications considering computing power limitations typical for applications in 
intrinsically safe zones. The comparison of  isolability features of presented algorithms is 
given in examples. Copyright  © 2002 IFAC. 
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1. INTRODUCTION 
 
Control tasks of technological processes may be 
generally defined in the terms of acting on the energy 
and mass flows. Actuators (final control elements) are 
applied for real-time acting on this flows. Faults or 
malfunctions of final control elements (e.g. control 
valves, servo-motors, positioners) are appearing 
relatively often in the industrial practice. The 
actuators are installed mainly in harsh environment: 
high temperature, high pressures, low or high 
humidity, dusty pollutants, chemical solvents, 
aggressive media, vibrations, etc. This has the crucial 
influence on the final control element predicted 
lifetime. The malfunction or failures are causing 
long-term process disturbs or even sometimes forces 
the installation shut down. Moreover, final control 
elements faults may vary final product quality may 
cause also a reasonable economic losses. For fault 
prevention or prediction, the on-line diagnostics of 
final control elements  may be applied. Continuously  
or periodically performed diagnosis of actuators cuts 

the maintenance costs. The introduction of remote 
on-line diagnostic of actuators may bring down the 
periodical inspection costs by factor 50-70%. In such 
cases the inspections and repairing of the actuators 
are undertaken only if necessary. In the recent 20 
years there were developed a numerous of fault 
detection and isolation methods. The problems of 
actuator  diagnosing  were also considered. For fault 
detection and isolation many different approaches 
were used, for example: 
•  parity equation (Massoumia and Van der Velde,  

1988;  Mediavilla, et al. 1997) 
•  unknown input observer (Phatak and 

Wiswanadham, 1988) 
•  extended Kalman filter (Oehler, et al. 1997) 
•  signal analysis (Deibert, 1994) 
•  fuzzy logic (Kościelny and Bartyś, 1997; 

Kościelny 1999) 
•    b-spline (Benkhedda and Patton 1997). 
The analysis of possible faults of assembly: control    
valve, pneumatic servo-motor was  studied by Koj, 
(1998). There were also developed intelligent  
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Fig.1. Diagram of the control valve-pneumatic 

servo-motor positioner assembly. Notations:  
A  - pneumatic servo-motor 
V  - control valve, 
V1,V2,V3 - bypass valves  
CPU  - positioner central processing unit 
ACQ   - data acquisition unit, 
MODEM - system for digital communication 
D/A   - digital-to-analogue converter 
Ud   - digital communication link 

 

 
Ua   

- analogue communication link (option) 
E/P  - electro-pneumatic  transducer 
DT  - displacement transducer  
PT  - pressure transducer 
FT    - volume flow rate transducer 
I   - control current of E/P  transducer 
P    - output pressure of the E/P transducer 
F   - volume flow rate signal  
 

positioners supporting auto diagnostic functions 
(Bayart and Staroswiecki, 1991; Isermann and 
Raab,1993; Kościelny  and Bartyś, 1997; Yang and 
Clarke, 1997). The decomposition of the diagnostic 
tasks in the complex systems and the concept of 
intelligent actuators providing diagnostic features 
were also presented in papers (Bouras and 
Staroswiecki, 1998; Kościelny and Bartyś, 1997). 
 
 

2. THE SET OF FAULTS OF THE ASSEMBLY: 
CONTROL VALVE, SERVO-MOTOR, 

POSITIONER 
 
Assembly consisting of: control valve, diaphragm-
spring pneumatic servo motor and positioner belongs 
to the most popular final control elements applied in 
the industrial practice. Fig. 1. shows the diagram of 
assembly. There are taken into account following 
realistic assumptions that for diagnostics are  
available following signals: U - positioner set point 
signal, I - control current of electro-pneumatic 
transducer,  P - pressure controlling pneumatic servo-
motor, X – servo-motor piston rod displacement, F - 
media volume flow rate. 

Faults may appear in: control valve, servo-motor, 
electro-pneumatic transducer, XT transducer, PT 
transducer and microprocessor control unit. The 
internal faults of  microprocessor control unit are 
detected autonomously by auto diagnostic 
procedures. This is the reason that control unit faults 
are not further considered. 
 
Let us assume that the set of possible primary faults 
of the final control element is known (Koj, 1998; 
Kościelny and Bartyś, 2000). The total of 19 faults  
{f1 .. f19} are distinguished. The faults are classified 
into four following groups: 
•  Control valve faults  {f1 .. f7}  
•  Pneumatic servomotor faults {f8 .. f11}  
•  Positioner faults {f12 .. f14}  
•  General faults/external faults {f15 .. f19} 
 

3. PROBLEM STATEMENT 
 
Let us assume, that the reference set of relations 
faults-symptoms are defined in the form of binary or 
three-valued matrices and minimal set of diagnostic 
tests (Kościelny and Bartyś, 2000) is known. 
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Binary or three-valued symptom evaluation has an 
disadvantage when considering symptoms 
uncertainty. This may be solved for example by 
applying given below fuzzy logic based approaches.  
 
Let  j-th symptom skj of k-th fault have a form of 
binary pair <0, 1> or FIS triplet 
 <-1, 0, 1> (Kościelny, 1999; Kościelny and Bartyś, 
2000) based on rough sets theory (Pawlak, 1991).  
 FIS - Fault Isolation System is defined as: 

><= FSRVSFFIS ,,,  (1)
where: F- set of faults (objects), S - set of diagnostic 
signals (attributes), V - set of all diagnostic signal 
values, while 

�
Ss

j
j

VV
∈

=  (2)

RFS - function attributing to each of the pairs fault-
diagnostic signal <f, s>, value or values: 

)(: VrSFRFS →×  

jkjjkFS VVsfr ⊂=),(  

(3)

 
The FIS defines pattern values of diagnostic signals 
for particular faults. If the diagnostic signal 
(residuum) is normalised in the range [0, 1] then the 
symptom value can be interpreted as a value of a 
fuzzy set. This set will be further called as a fuzzy 
symptom set. If  normalised crisp residuals rnj 
(j={1..J}; J - diagnostic test count) are available then 
the fuzzy diagnostic signals (fuzzy symptoms) are 
obtained by fuzzyfication of rnj values. In that case 
symptom value can be interpreted as a value of 
membership function of  fuzzy symptom. 
 
Let us define  j-th fuzzy diagnostic signal as the fuzzy 
variable <Fsj> Let fuzzy diagnostic signal will have 
three symmetrical terms: <-1>, <0>, <+1> as 
shown on Fig. 2. Fuzzy diagnostic terms <-1>, <0>, 
<+1> are analogue to fuzzy diagnostic test results 
with constant threshold (Mediavilla M., et al., 1997) 
where <-1> and <+1> terms are denoting negative 
test results, why <0> term denotes positive result 
(fuzzy fault free state). Fuzzy diagnostic tests results 
can be therefore defined as vector of  J membership 
function pairs <µ0nj, µ-1nj, µ+1nj> related to J fuzzy 
diagnostic tests with normalised thresholds ±Tnj 
 

{ }JjS njnjnjf ,...,2,1,, 110 =><= +− µµµ  (4)
 
 The fault detection is principally based on the tests 
of conformity of  fault reference signature and current 
(real time in the case of on-line diagnostics) set of 
symptoms. It means that fault (faults) are detected 
only and only when the current diagnostic signals S  
 
 

Fig. 2. Example of fuzzy symptom of j-th normalised 
fault residual rnj. Notations: Tnj – crisp 
threshold (see table 2), -1, 1 – negative fuzzy 
diagnostic test results (fuzzy faulty states),  
0 – positive fuzzy diagnostic test result (fuzzy 
fault free state). 

 
vector is equal to k-th fault reference signature Srk . 
This can be rewritten in the form: 
 
if ((s1 = sr1,k )∩ (s2 = sr2,k)∩ ..(sJ = srJ,k)) then f,k (5)

 
where:  sj    – j-th current diagnostic signal 
 srjk – j-th reference symptom of k-th fault 
 
 
3.1 Minimum approach 
 
Term (5) one can  interpret as a fuzzy rule of a fuzzy 
system, if sj crisp diagnostic signals will be replaced 
by its fuzzy analogues. In that case the conclusion 
from conditional relation (5) is equal to firing level τ k 
of the rule premise in the range of [0,1]. If the firing 
level τ k is more close to 1 then conclusion (fault f k ) 
is more certain. 
 
For the simplicity, of the presented below fault 
isolation algorithms and conformity to FIS notation 
let us assume that reference values srjk are tri-valued 
< 0, -1, +1>. The relation (5) can be therefore 
modified to the form of conformity conjunction: 

kJkkk fthenif )..( 21 ∩∩∩∩ τττ  (6)
where for FIS: 

( )jkjkjkjk
110 ,,max +−= ττττ  (7)
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and for binary valued reference signatures: 
( )jkjkjk

10 ,max τττ =  (9)



 

 
 









===

===

+− 01},{

00

1
11

1

0
0

0

jkrjkjjjk

jkrjkjjk

otherwisesfor

otherwisesfor

τµµτ

τµτ

t

(10)

When applying Mamdani’s  inference scheme the 
fuzzy inference from (6) is equal to intersection of τ jk 
sets: 

{ }
jk

Jj
k ττ �

,1∈∀

=  (11)

Diagnosis will  be defined as a set of pairs: 

{ } { }KkfDGN kkf ..1, ∈∀><= τ  (12)

Diagnosis can be also interpreted as the discrete 
fuzzy set τk defined in universe of discourse {F:fk∈ F}. 
Therefore exists simple graphical interpretation of 
diagnosis (12) very useful in practical applications. 
Moreover the τk value from (12) is extremely easy and 
fast to calculate. 
 
 
3.2 Multiplicative approach 
 
Main disadvantage of minimum approach is that 
diagnosis results are equal if the minimum values of 
fuzzy conformity factors are the same even if the 
other factors τjk are substantially different. This leads 
to the conclusion that results of minimum approach 
are sensitive to measurement noise. Let us consider 
the following multiplication formula that improves 
diagnosis noise immunity 

{ }

{ }{ }
∑ ∏

∏

∈∀ ∈∀

∈∀=

Kk Jj
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Jj
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,1 ,1

,1

τ

τ
τ  (13)

Fuzzy symptom evaluation is still considered 
however one can see that following simplified fuzzy 
inference scheme is applied: 

{ } { }
]1,0[:

,1,1

∈≈
∈∀∈∀

∏ jk
Jj

jk
Jj

jk τττ �  (14) 

The expression in denominator of (13) is only 
normalising the τk value into standard [0, 1] range. 
The Π and Σ operators, have wider meaning 
comparing to ∩ operator in expression (11). By 
multiplication of τjk values the effect similar to fuzzy 
concentration operator is achieved. This brings an 
effect of “gaining” the most certain diagnosis (this 
with τk value close to 1) and “damping” diagnoses  
with τk close to 0.  This effect could be evaluated as 
positive from the application point of view, however 
when applying the multiplication method more 
computational power expenses must be taken into 
account comparing to minimum approach. To solve 
this problem the following simplified form of 
equation (11) can be applied for real time 
applications. 

{ }
∏
∈∀

=
Jj

jkk
,1

ττ  (15) 

3.3 Additive approach 
 
Minimum and multiplication approaches are sensitive 
to particular case when one of conformity factors τjk 
is equal to zero. This does not guarantee sufficient 
immunity in noisy industrial environment. When 
introducing more robustness into fault isolation 
system this effect have to be overcome. From other 
side, on-line applicability forces relative simplicity of 
the approach. Fuzzy symptoms and fuzzy signature 
conformity measure may be assumed as normalised τk 
fuzzy set power. 

∑
=

=
J

j
jknk J 1

1 ττ  (16)

The absolute conformity of current symptoms and k-
th fault signature is achieved when |τk|n=1. Because 
of integrating properties of Σ operator the diagnosis 
from (14) is less sensitive for measurement noise. Σ 
operator brings the effects comparable to fuzzy 
dilution operator, what “flattened“ diagnosis. 
 
 
3.4 Mixed approach 
 
To combine the advantages of presented above 
approaches and minimise its disadvantages the mixed 
approach may be considered. Let us assume 
following diagnosis conformity factor: 
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where: t
K

k

J

j
jk

1 1
/1

= =
∑τ  scaling factor 

Both, nominator and denominator have integration 
properties what ensure appropriate immunity against 
noise. The denominator joins a concentration action 
and dilution one. This actions seems to be slightly 
balancing each other.  

 
3. EXAMPLES 

 
Assume availability of FIS table, (see table 1) 
(Kościelny and Bartyś, 2000) for assembly consisting 
of: control valve,  servomotor and positioner. 
 
Example 1 
Let the set of current fuzzy symptoms is as follows: 
FS =  {s1={0, 1, 0}, s2={0.4, 0.6, 0.0}, s3={1, 0, 0},  
s4 = {0.1, 0.9, 0.0}, s5={1, 0}, s6={0.8, 0.2}} 
The τ jk values (fuzzy symptom conformity table with 
references given in table 2, the diagnoses obtained 
from four fault isolation methods presented in the 
paper are shown in table 3. For comparability of the 
results the formula (15) is used for determining 
values of multiplicative method. 
 



 

 
 

Table 1. Fault Isolation System reference for assembly: control valve- servomotor-positioner 
 

FS 
S 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

s1 0 0 0 0 0 0 0 0 -1 -1 0 +1 
-1 

0 +1 
-1 

-1 0 0 0 0 

s2 +1 
-1 

-1 0 +1 
-1 

0 0 0 +1 
-1 

0 -1 +1 0 +1 
-1 

+1 
-1 

0 0 0 0 0 

s3 0 -1 +1 0 -1 +1 -1 0 0 0 0 0 +1 
-1 

0 0 +1 -1 +1 +1 
-1 

s4 +1 
-1 

-1 0 +1 
-1 

0 0 0 +1 
-1 

-1 -1 +1 +1 
-1 

+1 
-1 

0 -1 0 0 0 0 

s5 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 

0 
1 

0 0 0 0 0 

s6 0 0 1 0 0 1 0 0 0 0 0 0 0 
1 

0 0 0 0 0 0 
1 

 
Table 2. Fuzzy symptom conformity table and diagnosis for assembly: control valve- servomotor-positioner (example 1) 

 
FS 
S 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

s1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 
s2 0.6 0.6 0.4 0.6 0.4 0.4 0.4 0.6 0.4 0.6 0 0.4 0.6 0.6 0.4 0.4 0.4 0.4 0.4 
s3 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 
s4 0.9 0.9 0.1 0.9 0.1 0.1 0.1 0.9 0.9 0.9 0 0.9 0.9 0.1 0.9 0.1 0.1 0.1 0.1 
s5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
s6 0.8 0.8 0.2 0.8 0.8 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

 
Table 3.  Fuzzy diagnoses for assembly: control valve- servomotor-positioner (example 1) 

 
FS f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

Minimum 
approach    

0 0 0 0 0 0 0 0 0.4 0.6 0 0.4 0 0.1 0.4 0 0 0 0 

Multiplicative 
approach  

0 0 0 0 0 0 0 0 0.2
9 

0.4
3 

0 0.2
9 

0 0.0
5 

0.2
9 

0 0 0 0 

Additive 
approach   

0.5
5 

0.5
5 

0.2
8 

0.7
2 

0.3
8 

0.2
8 

0.3
8 

0.7
2 

0.8
5 

0.8
8 

0.4
7 

0.8
5 

0.5
5 

0.7
5 

0.8
5 

0.3
8 

0.3
8 

0.3
8 

0.3
8 

Mixed approach    0.4
6 

0.4
6 

0.2
4 

0.6
0 

0.3
2 

0.2
4 

0.3
2 

0.6
0 

0.7
2 

0.7
4 

0.3
9 

0.7
2 

0.4
6 

0.6
3 

0.7
2 

0.3
2 

0.3
2 

0.3
2 

0.3
2 

 
Table 4.  Fuzzy symptom conformity table and diagnosis for assembly: control valve- servomotor-positioner (example2) 

 
FS 
S 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

s1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 
s2 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 
s3 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 
s4 1 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 
s5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
s6 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
Table 5.  Fuzzy diagnoses for assembly: control valve- servomotor-positioner (example 2) 

 
FS f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

Min. approach    0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Mult. approach  0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Additive 
approach   

0.8
3 

0.6
7 

0.3
3 

1.0
0 

0.5
0 

0.3
3 

0.5
0 

1,0
0 

0.5
0 

0.6
7 

0.8
3 

0.6
7 

0.8
3 

0.6
7 

0,5
0 

0.5
0 

0.5
0 

0.5
0 

0.5
0 

Mixed 
approach    

0.4
2 

0.3
3 

0.1
7 

0.5
0 

0.2
5 

0.1
7 

0.2
5 

0.5
0 

0.2
5 

0.3
3 

0.4
2 

0.3
3 

0.4
2 

0.3
3 

0.2
5 

0.2
5 

0.2
5 

0.2
5 

0.2
5 

 



 

  

Example 2:  
 
Consider the particular set of current fuzzy symptoms 
equal to crisp three-valued set obtained from 
diagnostic signals set given in example 1 by rounding 
the set entries to integer values: 
 

S =  {s1={0, 1, 0}, s2={0, 1, 0}, s3={1, 0, 0}, 
s4 = {0, 1, 0}, s5={1, 0}, s6={1, 0}} 

 
The τ jk values (fuzzy symptom conformity table with 
references given in table 4) in this case are binary 
valued. Diagnosis is shown in table 5. 
 
 

4.  SUMMARY 
 
For the actuator fault isolation the fuzzy techniques 
and information system theory was applied. The four 
simple fuzzy fault isolation approaches are presented. 
These approaches allows considering  symptoms 
uncertainty and real time applicability. The 
approaches are characterised by immune factors 
against measurements noise. The greater immunity 
factors, the more diluted or “flatness” diagnosis can 
be observed.  
 
Because of simplicity and fastness, presented above 
diagnostic algorithms for final control are useful for 
application in on-line diagnostics performed in 
supervisory control and diagnosing systems as well as 
in the smart actuators. To make the fault detection 
and isolation algorithms sufficiently effective the 
availability of the majority of considered 
measurements must be ensured. If it is not a case  the 
isolation quality appropriately decreases. 
 
It is also possible to run all approaches parallel and 
building decision making algorithm basing on 
evaluation of all diagnosis achieved. 
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