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Abstract: The famous Popov criterion is used for absolute stability analysis of uncertain
nonlinear systems. Uncertainty is assumed to exist in the linear subsystem in terms of
coefficient perturbations in complex plane discs. Existing results, which are based on strict
positive realness (SPR) conditions, are generalized so as to cover a wider spectrum of
systems. All the results are then restated using circular arithmetic which is proposed as an
alternative to SPR conditions. The use of circular arithmetic leads to non-conservative results
at the expense of more computational effort. This is in contrast with the conservative results
yielded by the computationally more efficient approach based on SPR conditions.
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1. INTRODUCTION

Control systems consisting of a known, linear, time-
invariant element in the forward path and a sector-
bounded nonlinearity in the feedback path have been
long under consideration. The importance of this con-
figuration stems from its very nature; it represents
a family of systems arising from the uncertainty in
the nonlinear part. The famous absolute stability (AS)
theory, originally formulated and developed by Lur’e,
stands as a major robustness result for systems of this
sort. The term AS refers to the stability of a continuum
of systems instead of just a specific one. The main
idea of this theory is to deduce the stability of an
entire family of systems by only studying some of its
members (Narendra and Taylor, 1973).

Following the work of Lur’e, numerous solutions have
been obtained to different versions of the AS problem.
Among these, the most celebrated one is, probably, the
Popov criterion (PC) (Popov, 1961) which provides
sufficient-only conditions for global asymptotic sta-
bility under the assumption that the linear part of the
system has a fixed structure. The main reasons under-

lying this fact are its close resemblance to the classical
Nyquist stability condition and its generality in the
sense that its special cases correspond to several other
solutions to the AS problem (Hsu and Meyer, 1968).

Extensions of the PC have been given by several re-
searchers for cases with one/two of the following three
uncertainty types in the linear subsystem: parametric,
disc or norm-bounded. Moriet al. (1994) and Dahleh
et al. (1993) have recast it in the presence of interval
parametric uncertainty. Soh and Foo (1992) and Tan
and Atherton (1999) have considered it under the in-
fluence of affine linear parametric uncertainty. Cases
involving additive or multiplicative norm-bounded
perturbations have been dealt with by Tsypkin and
Polyak (1992). Kamal and Dahleh (1993) and Im-
pram and Munro (2001) have provided generalizations
for systems with both parametric and norm-bounded
perturbations by exploiting some fundamental results
from the theory of robust control. With regard to disc
uncertainties, on the other hand, the first results were
obtained by Polyak and Tsypkin (1991) who derived a
robust (but, in general, conservative) version of the PC
by utilizing strict positive realness (SPR) conditions.
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Disc uncertainty is an alternative to real parametric
uncertainty, and it gives rise to transfer functions with
complex coefficients. Given that in daily life there
is no such thing as a complex number, the obvious
question to ask at this point is whether or not such
transfer functions make sense and, if they do, how they
might arise. It is perhaps easier to give answers to the
second question and use these to answer the first one.
To this end, the simplest example is probably a system
model which involves the describing function of a
multi-valued nonlinear element such as a relay with
hysteresis (Gelb and Vander Velde, 1968). Bose and
Shi (1987) have given more sophisticated examples
such as models of whirling shafts, vibrational systems,
electrical networks and filters. Filters are also men-
tioned in the papers by Barros and Lind (1986) and
Crystal and Ehrman (1968), where it is claimed that
complex coefficient filters are computationally much
more efficient when it comes to simulating band-pass
processes. Therefore, transfer functions with complex
coefficients are not merely theoretical objects, and the
motivation for considering disc uncertainty is the same
as the one for considering real parametric uncertainty;
it is a device for taking into account variation of pa-
rameters in prescribed ranges.

The aims of this paper are to (i) extend the results of
Polyak and Tsypkin (1991) to cases where the non-
linearity lies in a sector with non-zero lower bound,
and (ii) develop a robust and non-conservative version
of the PC by making use of circular arithmetic. A
numerical example is given to illustrate the use of
the mathematical results and to compare the approach
based on SPR conditions to that based on circular
arithmetic.

2. ROBUST POPOV CRITERION BASED ON SPR
CONDITIONS

The system configuration which is considered through-
out this paper is depicted in Figure 1, where���� �
����������� is a fixed controller with real/complex
coefficients and������ is a proper plant with numer-
ator����� �� � ���

� � �����
��� � � � � � ��� �

��, denominator������� � 	��
� � 	����

��� �
� � � � 	�� � 	�, and vector of uncertain parameters
� � ����� � ���� 
 
 
 � ��� 	�� 
 
 
 � 	��. The domain
in which� varies is defined as� � ���� � � ����
�� � � � � � �� where each�� (��) is a complex plane
disc with center��� (	�� ) and radius��� (�
��. The
scalar� sets the level of disc uncertainty around the
nominal coefficients��� and	�� . The input/output (I/O)
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Fig. 1. Uncertain nonlinear system.

characteristics of the nonlinearity� are defined in the
sequel.

An important condition which arises in the solution of
the AS problem is the property of SPR of a transfer
function. This property is closely related to the pas-
sivity and robustness of the system, and is defined as
below:

Definition 2.1: A proper transfer function is said to be
strictly positive real if

(i) it has no poles in the closed right half plane,
(ii) its real part is positive for all� � �.

When there is disc uncertainty in the transfer function,
a family of systems arises and, thus, the tests involved
in the above definition need to be carried out infinitely
many times. The theorem below is a considerable
simplification of this task. Before stating it, however,
let ������ � ���������� and define the following
frequency functions:
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����
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� ����� �

����� (1j)

where�� � ������� and	 denotes complex conjuga-
tion.

Theorem 2.1: ������ is strictly positive real for all
� � �, if and only if ������� is strictly positive
real and the following conditions are satisfied for all
� � �:

(i) ����� � ���,
(ii) Re
��������� � �,
(iii) Re 
��������� � �.

Proof: Necessity of nominal SPR is obvious since
������� � ������. Similarly, condition (i) is noth-
ing but a stability test for������ (Impram, 2000).
Therefore, assume that these two requirements are
met. Now, an alternative way of expressing condition
(ii) in Definition 2.1 is

���������� � ��	 � � � � (2)

where

�������� � ������ � ��������
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� ������������� ����� �������



Since� is essentially the inverse tangent function,
which has a monotonically increasing nature, it is
straightforward to see that the extreme values of
�������� are given by


������������������������������������



�����������������������������������

which can be thought of as the phases of two different
complex-valued frequency functions. Indeed, compar-
ing these with

��������� � ��������� ���� ���� ��������

��������� � ��������� ��� �� ���� ��� �

�����

� ������������� ������������

yields 
���������� � ��������� and


��������� � ���������. From (2), it follows
that��������� � ��	 and��������� � ���	
which are equivalent to conditions (ii) and (iii), re-
spectively.

The sufficiency proof is easier to give. Whenever
conditions (i)-(iii) are satisfied, SPR of������ is
implied. 


Assume now that the nonlinearity� in Figure 1 has
a memoryless and time-invariant I/O characteristic
lying in the sector��� ���, and that� � �� with
�� being real. Assume also that������� is strictly
proper and strictly stable. The resulting system is then
absolutely stable in the sense of the PC, if there exists
an� � � such that

Re
�� � �������������� ���� � � (3)

holds for all� � �. This inequality can be seen as the
SPR condition for the transfer function

������� � �� � ���������� � ���� (4)

Defining the frequency functions

�
��� �
�

� � ������	�����
������ (5a)

����� � �
���� �num����������� (5b)

�������� � ���������� ���������� (5c)

�������� � ��������� �

� ����� ������ (5d)

where num��� denotes the numerator of its argument,
and assuming that������ is strictly proper and strictly
stable for all� � �, the PC can be stated for systems
with disc uncertainties in the linear part as follows:

Theorem 2.2: Let ������� satisfy the PC for an� �
�. Then,������ satisfies the PC for all� � �, if
and only if the conditions of Theorem 2.1 hold with
�������� and�������� being as in (5c) and (5d),
respectively.

Proof: The proof can be given by making use of the
same arguments as in the proof of Theorem 2.1.


Although applying this result to systems with a fixed
level of disc uncertainty is quite straightforward, when
���� is to be determined, the iterative procedure be-
low is called for:

(1) Plot the Popov locus of�������.
(2) Choose an� and draw a line through the points

������ � �� and
�
�� �����

��
�
.

(3) Assume a� and observe the behaviour of�����,
Re
��������� and Re
���������.

(4) Repeat the above step for different� values.

The main difficulty associated with this procedure is
that���� may vary according to the choice of�. This
was not pointed out by Polyak and Tsypkin (1991)
who have stated the above results by remaining in the
complex plane. They have set���� � �, and with
specific reference to Theorem 2.1, they have defined

�� ���� � ������ �
����� ���

������ � �������
��������

�� ���� �

�
��

�
����� ����
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� ������ ����

������ �
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��

�
����� ����

��
� ������ ����

instead of (1e)-(1h). These frequency functions, where
�� ��� and����� are respectively as in (1a) and
(1b), lead to condition (i) of Theorem 2.1 requiring
the non-intersection of������ and the disc��� � �.
They have used these conditions also in their version
of Theorem 2.2, which requires only�� ���� above
to be modified.

The PC, in its original form, is not applicable to sys-
tems having a marginally stable or an unstable linear
part and/or a nonlinearity bounded by a sector�� �� ���.
Of the proposed solutions to this problem, the most
straightforward ones are based on simple transfor-
mations of the system elements. One such technique
is the pole-shifting transformation which consists of
changing���� ��� into �������� �������, and�������
into��������� � ��������

�
� � ��������

��
�

which
has the same zeros as�������, but different poles.
Since the PC requires the lower bound of the sector
to be zero, it is common practice to set��� � ��
provided that��������� is stable. Then, satisfaction
of

Re
�� � ���������������� ��� � � (7)

for an � � � and for all� � � implies AS of the
original system. Here,� � �����. Note that since the
linear subsystem is now given by���������,�������
in (4) becomes

������� � �� � ������������ � ��� (8)

from which

�
��� �
�

������
� � ������	��� � ����
���

(9a)

�� ��� � �
���� �num����������� (9b)

����� �
�
���	��� ��
���

�
� �den�����������

(9c)

are obtained. Theorem 2.2 can then be restated as
follows:

Theorem 2.3: Let ��������� satisfy the PC for an
� � �. Then,�������� satisfies the PC for all� � �,



if and only if the conditions of Theorem 2.1 hold with
����� being as in (9c), and�������� and��������
being as in (5c) and (5d), respectively.

Proof: Similar to that of Theorem 2.2. 


Remark: The numerator and denominator polynomi-
als in (4) and (8) involve common uncertain parame-
ters. Consequently, any AS result obtained via Theo-
rems 2.2 and 2.3 is, in general, conservative.

3. CIRCULAR ARITHMETIC

Let ���� �� be a circular region in the complex plane
defined as���� �� � 
� � � � �� � �� � ��. Then, the
simplest formulae for the addition of such regions,
their multiplication by complex numbers and their
inversion are as follows (Polyaket al., 1994):

��
���

�������� ��� � �

�
��
���

�����
��
���

��� ���

�
(10)

������ �� �
�
���� � ��

�
��
�
�
�������� �

�
(11)

In (10), the�� are arbitrary complex numbers, and in
(11), it is assumed that��� � �. Unfortunately, the
product of two circular regions does not describe a
similar region. Assuming�� �� � and�� �� �,

������ ��������� ��� � ��������� ��� (12)

where �� � ������� and ����� ��� is a so-called
oval. The points� �  !�� making up����� ��� are
determined according to the rules below:

if 
��
��� ������ then � ���  ��� "� ��� 	��

if 
��
��� ������ then � � ��  ��� "� ��#� #�

The extreme points �,  � and # are respectively
given by

 � � ���� � ���"�

�
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�� "
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�
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Fig. 2.����� ��� for different values of�� and��.

where��� � ��� � ���. Although the set����� ���
is always closed and symmetric with respect to the
real axis, depending on�� and�� it may or may not
have a smooth and convex boundary (see Figure 2).
Note that, when
��
��� ��� � �, the boundary of
����� ��� is obtained by fixing at  �, whereas if

��
��� ��� � �, it is generated by setting �  �

and �  �.

If either of the circles, say��, has its center at the
origin, then (12) becomes

����� ��������� ��� � � ��� �� ������ ����

If �� is also located at the origin, then the result is
obvious from the above. The division of�� and��, on
the other hand, is essentially the multiplication of��
by the inverse of��.

4. ROBUST POPOV CRITERION BASED ON
CIRCULAR ARITHMETIC

From (10), it should be clear that, at a fixed� � �,
as the parameter vector� varies in�, ������ �� and
�������� respectively describe the circular regions

�� ������� �
��� ������� (13a)

�� ��������
��� ������� (13b)

This suggests that�������; i.e. the complex plane
image of������ at a fixed� � �; can be obtained
by dividing two circles. The brute force solution to this
problem is point-by-point division of the boundaries.
A computationally more tractable approach, on the
other hand, is to make use of the fundamentals of
circular arithmetic.

Theorem 4.1: Let ������ be a transfer function as
described in Section 2 such that������� is bounded.
Then, at each� � �,

$ ��������� � ������������$ �� ������� �������
(14)

where $��� denotes the boundary of its argument,

���� �
�
�� ������

�
��

and� ������� ������ is an
oval as given in (12) with

����� � ��� ���� ������� �
��� (15a)

����� � ������� ��������
��� (15b)

where�� ��� and����� are as defined in (1a) and
(1b), respectively.

Proof: As mentioned before stating the theorem, for
a fixed�, ������� can be computed by multiply-
ing (13a) by the inverse of (13b) which, from (11),
is a disc with center������������

�� and radius
����������������

���� � ��������
��. According

to (12), this operation is equivalent to

������� � ������������� ������� ������ (16)

The proof is completed by noting that

$ �������������� ������� �������

� ������������$ �� ������� ������� (17)



since�������� and���� are respectively complex
and real numbers and, as such, preserve the boundary
of � ������� ������. 


The above frequency domain result enables one to
check the Popov inequality directly and, thus, leads
to non-conservative assessment of AS. However, due
to the set operations involved, the computation times
are higher than those required by the approach based
on SPR conditions. These points can be seen in the
theorem below which is a restatement of Theorems 2.2
and 2.3.

Theorem 4.2: The inequalities in (3) and (7) are
satisfied for all������ � ������ if and only if they
are satisfied for������ � $��������.

Proof: The proof for (3), which can be written as

Re
�������� � � (18)

where������� is as given in (4), follows directly
from the fact that, for fixed� and� in �,

$ ��������� � $


�������������� � ����

�
� �������$ ��������� � ���� (19)

where$ ��������� � �����$ ���������. The theo-
rem can be proven similarly for (7).������� in (18)
is now given by (8) which can be written as

������� � �� � ����
�
��������� � ��

�
��

� ���

It is then easy to see that

$ ��������� � $
�
%����

�
������������

�
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� %����$
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������������

�
��


����

� %����
�
�$ ����������

��
���

�
��

����

(20)

where%���� � � � ���. 


In practice, (19) is used as follows:

(1) Choose an� from�.
(2) Plot the Popov template

$ ��� ������� � Re
$ ����������

� �Im 
$ ����������

(3) Repeat these steps for different� values.
(4) See if an� can be found such that (3) is satisfied.

The boundary result in (20), on the other hand, means
that the Popov templates are given by

$ ����� ������� � Re
$ ������������

� �Im 
$ ������������

where

$ ����������� �
�
�$ ����������

��
� ��

�
��

Remark: When the coefficients of���� and�������
are real, the� sweeps in Theorems 2.1-2.3 and 4.2 can
be restricted to�� .

5. NUMERICAL EXAMPLE

To illustrate the salient features of the procedure given
immediately after Theorem 2.2, and compare the re-
sults it yields to those obtained by making use of circu-
lar arithmetic, consider the system of Figure 1 where
the nonlinearity� belongs to the sector��
��� �
��, and

���� �
�� � �	��� �� � �	�

�� � ����� � �� � ����� �� � ��

������ �
���

� � ���� ��
	��

� � 	��
� � 	��� 	�

The uncertain parameters are such that�� � �� �
��� ���� �����,� � ���� �� ��,�� � �	����	� ���
���� �� � ���� �� � ��, and� � ���� �� 	� ��. Now,
because the lower bound of the sector is not zero,
first, a pole-shifting transformation with��� � �
�� is
applied to the system. Next, the� value for which the
PC is just satisfied with��������� is determined. It
should be obvious that for this particular�, ���� � �.
Then, � is decreased and the steps of the relevant
procedure are carried out in order to obtain the corre-
sponding����. For each�, a���� is also computed
via Theorem 4.2. The results are shown in Figure 3,
where the conservatism of the approach based on SPR
conditions is evident. The maximum point of the solid
curve is �
����, whereas that of the dotted one is
�
����. Figure 4, on the other hand, illustrates the
application of Theorem 2.3 with� � � and���� �
�
����.

6. CONCLUSIONS

Nonlinear systems with disc uncertainties have been
considered and their AS has been studied using the
PC. Some results in this direction already exist in the
literature. However, they all make use of SPR con-
ditions and are, in general, conservative. The main
contribution of this paper is the use of circular arith-
metic instead of SPR conditions in order to draw non-
conservative conclusions regarding AS. It must be
said, however, that this new approach is computation-
ally more demanding, even though this demand is well
within the capabilities of modern computing facilities.
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