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Abstract: The problem of the integral evaluations of the state and control vectors in
continuous multi-input-multi-output fuzzy control systems is investigated. The fuzzy
controller is assumed to be nonlinearity in a bounded sector and the controlled plant
- a linear system described by the differential or integral equations. The stability
problem is investigated and the problem of how to use the integral evaluations for the
fuzzy control system design is proposed.
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1. INTRODUCTION

Despite the increasing number of industrial ap-
plications of fuzzy control, there are some gaps in
the analytical methods of fuzzy control quality as-
sessment and stability analysis of the closed-loop
systems containing nonlinear fuzzy controllers.
Still lagging behind fuzzy controllers applications
seem to be the systematic methods of analysis and
design of fuzzy controllers, especially in the case
of multi-input-multi-output systems, even if the
controlled plants are linear.

In this work continuous closed-loop systems con-
taining multivariable fuzzy controller and the lin-
ear or at least linearizable stationary dynamical
plant are investigated. The plant can be asymp-
totically stable or not, but has to be stabiliz-
able by the linear feedback. The fuzzy controller
is regarded as a nonlinear function satisfying a
sector condition, similarly as in (Ray and Ma-
jumder, 1984), (Calcev et al., 1998) and the other
works. Although the sector condition is a restric-
tion of the class of investigated fuzzy controllers,
it applies to a great deal of fuzzy expert systems
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as direct control devices in the closed-loop. Most
often such systems either exactly are, or resemble
the sector bounded nonlinearities in the sense of
functions approximation.

The main goal of this article is to give an analyti-
cal method of the state and control vector norms
evaluations. It seems to be a novelty in the fuzzy
control literature. The controlled plant can be
described by a differential or integral equations.
The obtained integral evaluations one can use to
quality assessment of the fuzzy control systems.
The way of how to use these evaluations for fuzzy
controller design is briefly explained.

2. ASSUMPTIONS AND PROBLEM
STATEMENT

We consider the multi-input-multi-output (MIMO)
closed-loop system as in Fig. 1. There are n state
variables and m control signals, which constitute
the vectors x (t) = [x1 (t), . . . ,xn (t)]T ∈ Rn and
u (t) = [u1 (t), . . . ,um (t)]T ∈ Rm in the system.
We assume that the controlled plant is linear one
or linearizable and described by the state equation

ẋ (t) = Ax (t) +Bu (t) , x (0) ∈ Rn (1)
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Fig. 1. Closed-loop MIMO fuzzy control system

where A ∈ Rn×n and B ∈ Rn×m. The con-
troller is regarded as nonlinear part of the sys-
tem, which describes the vector function u (t) =
f [x (t)]. We consider such a class of the fuzzy
controllers, for which at least one output uj =
fj [x (t)] essentially depends on variables from the
set {x1, . . . , xn} (Kluska, 2000, p. 35) and the
following sector condition

βj ≤ uj
σj
≤ βj + kj , ∀σj 6= 0 (2)

σj = 0⇒ uj = 0

σj =
nX
i=1

hjixi, j = 1, . . . , m

is satisfied. This means that for each controller
output uj there exist nonnegative numbers βj and
kj , (j = 1, . . . , m) and linear combination of
the state vector components, that the inequalities
(2) hold. The variables σj constitute an artificial
vector σ = [σ1, . . . , σm]

T = Hx ∈ Rm, where
H ∈ Rm×n. The elements of the matrix H follow
only from the fuzzy controller features but not
from the features of the plant (Kluska, 2000). It
should be stressed that σ is not the plant output
and does not occur in the system in Fig. 1.

Let us denote by λ [A] eigenvalues of the matrix
A. The matrixA in the equation (1) can be stable,
i.e. Reλ [A] < 0 or not, but we assume that the
linear part of the system viewed ”from u to σ” is
stabilizable. If the matrixA is not stable, then one
can apply the well known method of eigenvalues
shifting, see e.g. (Desoer and Vidyasagar, 1975),
to obtain the following system

ẋ (t) = A1x (t) +Bu1 (t)
u1 (t) = u (t)− Lσ (t)
u (t) = f [x (t)]
σ (t) = Hx (t)
A1 = A+BLH, L = diag [β1, . . . , βm]
(kjσj − u1j)u1j ≥ 0, j = 1, . . . , m

(3)

where u1 (t) = [u11, . . . , u1m]
T . For the function

u1 (t) the sector condition (2) holds with βj = 0
for j = 1, . . . , m. In the sequel we will assume
that either the matrix A is stable, or the matrix
A1 is stable. If Reλ [A] < 0, then βj = 0 for
j = 1, . . . , m and the system (1)-(2) will be

considered. If Reλ [A1] < 0, then βj > 0 for
some j ∈ {1, . . . , m} and the system (3) will be
considered.

The scalar product of the vector functions u (t)
and y (t) in the square integrable vector space in
the time interval [0, T ] will be denoted by

hu,yiT =
Z T

0

mX
j=1

uj (t) yj (t) dt

and the norm of the vector x (t) in the space
L2 (0, T ) by ||x||T =

phx,xiT , where T ≤ ∞.
For T =∞ the index T will be omitted.

Beside the system (3), another more general sys-
tem described by the integral equation

σ (t) = z1 (t) + (G1 ∗ u1) (t)
u1 (t) = u (t)− Lσ (t)
u (t) = f [x (t)]
σ (t) = Hx (t)­
u,σ −K−1u®

T
≥ 0, ∀T ≤ ∞

(4)

will be considered, where z1 (t) is an external force
with ||z1|| < ∞, G1 the impulse response with
||G1|| < ∞, and (G1 ∗ u1) (t) - the convolution
integral, i.e.

R t
0
G1 (t− τ) ∗ u1 (τ) dτ . In the par-

ticular case, when the linear part is described by
the differential equation (1), then

z1 (t) = He
A1tx (0) (5)

and

G1 (t) = He
A1tB (6)

However, the Laplace transform of the matrix
functionG1 (t) can be or not a rational function of
the complex variable s. This allows one to consider
more general linear systems than those described
by differential equations (1).

3. STABILITY CONDITIONS

In this Section three theorems will be given -
see (Kudrewicz, 1970), (Desoer and Vidyasagar,
1975), (Vidyasagar, 1978) and (Junger, 1989),
whose more detailed implementations and proofs
of stability problems were given in (Kluska, 2000).
The theorems will be applicable to stability ana-
lysis of the continuous fuzzy control systems de-
scribed by (1)-(2) or (4). We will try to use the
lemmas which give sufficient stability conditions
not very far from necessary ones.

3.1 Small gain theorem

Theorem 1 If in the system (1)-(2) the condition

p2 · sup
ω
max
j

λj (ω) < 1 (7)



is satisfied, where

p2 =
mX
j=1

¯̄̄̄
1

2
kj

¯̄̄̄2 nX
i=1

|hji|2 > 0, {hji}m×n =H

(8)

λ1 (ω) , . . . , λm (ω) are eigenvalues of the Hermi-
tian matrix V∗ (jω) ·V (jω), and

V (jω) =

µ
I−G0 (jω)

1

2
KH

¶−1
G0 (jω) (9)

G0 (jω) = (jωI−A)−1B (10)

then xi ∈ L2 (0,∞), xi (t) is a bounded function
and lim

t→∞xi (t) = 0 for any i = 1, . . . , n.

3.2 Theorem of Junger

Theorem 2 If in the system (1)-(2) the condition

Reλ [W (jω)] < 0, ∀ω ∈ [−∞,∞] (11)

is satisfied, where

W (jω) =G (jω)−K−1 (12)

G (jω) = H (jωI−A)−1B
K = diag [k1, . . . , km]

then there exist the norms ||x|| and ||u||.

3.3 Theorem of Kudrewicz

Theorem 3 If in the system (1)-(2) the condition

δ = −1
2
sup
ω
max
j
µj (ω) > 0 (13)

is satisfied, where µ1 (ω) , . . . , µm (ω) are eigen-
values of the Hermitian matrix W (jω)+W∗ (jω)
and the matrix W (jω) is given by (12), then
the solutions x (t) of the system are bounded and
lim
t→∞xi (t) = 0 for any i = 1, . . . , n.

One can prove that the sufficient stability condi-
tion for the system (4) is given by the inequality

δ1 = −1
2
sup
ω
max
j

ρj (ω) > 0 (14)

where ρ1 (ω) , . . . , ρm (ω) are eigenvalues of the
Hermitian matrixW1 (jω) +W

∗
1 (jω), as follows

W1 (jω) =G1 (jω)−K−1 (15)

G1 (jω) = H (jωI−A1)
−1B

A1 = A+BLH

L = diag [β1, . . . , βm]

K = diag [k1, . . . , km]

The proof follows from lemmas given in (Kluska,
2000).

Corollary 1 Let us denote by λmax [A] the maxi-
mal eigenvalue of the matrix A. From the Hirsch
theorem (Bodewig, 1956), of the form

Reλ [W (jω)] ≤ 1
2
λmax [W (jω) +W∗ (jω)]

(16)

one can conclude that:

(1) in the case of multi-output (MIMO) fuzzy
controllers, when m > 1, from the condition
(11) one obtains less conservative results,
than those from the condition (13),

(2) in the case of one-output (MISO) fuzzy con-
trollers, when m = 1, the results of both
criteria are the same, because the inequality
(16) becomes the equality.

4. INTEGRAL EVALUATIONS FOR THE
STATE AND CONTROL VECTORS

In this Section the upper evaluations of the norm
of the state and control vectors for the system
(4) will be given, which one can also use for the
systems (1)-(2) or (3).

4.1 Upper bound of the state vector norm

When analyzing proofs of stability theorems, one
can derive the following evaluations for the state
vector norm (Wiktorowicz, 2001)

||x|| ≤ ||z2||+ 1

δ1
||G2|| · ||z1|| (17)

where

z2 (t) = e
A1tx (0) , G2 (t) = e

A1tB (18)

||G2|| = sup
ω
max
j

q
γj (ω) (19)

and γ1 (ω) , . . . , γm (ω) are eigenvalues of the
Hermitian matrix G∗2 (jω) ·G2 (jω).

4.2 Upper bound of the control vector norm

In the considered system u1 = u − Lσ, thus
||u|| ≤ ||u1|| + maxj βj · ||σ||. From the first
equation of the system (4) one can conclude that

||σ|| ≤ ||z1||+ ||G1|| · ||u1||
where

||G1|| = sup
ω
max
j

q
λj (ω) (20)

and λ1 (ω) , . . . , λm (ω) are eigenvalues of the
Hermitian matrix G∗1 (jω) ·G1 (jω) and G1 (t) is
given by (6). Because of the inequality

||u1|| ≤ 1

δ1
||z1|| (21)



the following evaluation

||u|| ≤ ||z1||
·
1

δ1
+max

j
βj

µ
1 +

1

δ1
||G1||

¶¸
(22)

holds where z1 is given by (5).

Corollary 2 The fuzzy controller can be easily
designed as a linear one. A theorem about li-
nearity of the fuzzy controller of Takagi-Sugeno
type (Takagi and Sugeno, 1985) was given in
(Kluska, 1995). In our case the fuzzy controller
is linear one, if

u (t) = LHx (t) (23)

holds. In this case one obtains

||x|| = ||z2|| (24)

||u|| = ||LHz2|| (25)

where z2 is given by (18) and A1 = A + BLH,
and L = diag [β1, . . . , βm]. The proof is rather
simple and will be omitted here.

5. HINTS FOR DESIGNERS

Using the integral evaluations, one can aply the
following procedure for the MIMO fuzzy controller
design, or when analysing the MIMO fuzzy control
system.

(1) Computation the stability region of the fami-
ly of linear systems in the parameter space
r1, . . . , rm, using so-called generalized Hur-
witz condition, which has to be fulfilled - see
(Kluska, 2000):

Re [Ar] < 0, ∀ rj ∈ [βj ,βj + kj ] (26)
Ar = A+BRH, R = diag [r1, . . . , rm]

(2) Choosing the stability criterion:
(a) Theorem 2 - in the case of the differential

equation description ẋ (t) = Ax (t) +
Bu (t),

(b) Theorem 3 or 1 - in the case of the inte-
gral equation σ (t) = z (t) + (G ∗ u) (t).
Then the stability region of the nonlinear
system should be computed.

(3) Analytical computation of the norms ||x||
and ||u|| for the linear system as the func-
tion of lower sector bounds β1, . . . , βm - see
Corollary 2. In this point the fuzzy controller
is assumed to be temporarily linear one.

(4) Computation of upper evaluations Ix and
Iu as the functions of sector parameters
β1, . . . , βm and k1, . . . , km according to in-
equalities (17) and (22), such that

||x||2 ≤ Ix, ||u||2 ≤ Iu
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Fig. 2. Stability regions computed numerically:
the linear system - Dl; the nonlinear system:
from Junger theorem - Dj , from Kudrewicz
theorem - Dk, from small gain theorem - Ds

(5) Choosing the sector bounds for the fuzzy con-
troller based on the quality index I defined
as the weighted sum of evaluations Ix and Iu.

Example Consider the system (1)-(2) in which

A =

−4 −9 −101 0 0
0 1 0

 , B =

 2 −10 1
1 0


H =

·
1 0 0
0 1 1

¸
and the initial condition x (0) = [1, 0, 0]

T . Since
Reλ [A] < 0, thus β1 ≥ 0 and β2 ≥ 0 are allowed.
(1) Computing the stability region of the family

of linear systems. The matrix Ar given by
(26)

Ar =

 2r1 − 4 −r2 − 9 −10− r21 r2 r2
r1 1 0


is stable iff the parameters r1 and r2 belong
to the region Dl as depicted in Fig. 2. In this
region the generalized Hurwitz condition is
satisfied.

(2) Computation of stability region of the non-
linear system. We examine stability of the
system using Theorems 1-3.
Application of Theorem 1. From (8) one ob-
tains

p2 =
1

4
k21 +

1

2
k22

and from (10) the matrixG0 (s) = L
£
eAtB

¤
=

(sI−A)−1B, (L denotes Laplace operator),
next, based on (9) the matrix V (s) =µ
I−G0 (s)

1

2
KH

¶−1
G0 (s), which has the

form

V (s) =
2

M (s)

 V11 V12V21 V22
V31 V32





whereM (s) = m3s
3+m2s

2+m1s+m0, and
m3 = 4,
m2 = 16− 4k1 − 2k2,
m1 = 36 + 20k1 − 8k2 + 3k1k2,
m0 = 40− 6k2 + k1k2,
V11 = 4s

2 − (3k2 + 20) s− k2,
V12 = −2

¡
s2 + 9s+ 10

¢
,

V21 = (k2 + 4) s+ 3k2 − 20,
V22 = 2

£
s2 + (3− k1) s+ 5k1

¤
,

V31 = 2s
2 + (8− k2) s+ 22− 3k2,

V32 = (2− k1) s+ 6− 11k1.
The norm ||V|| we calculate numerically, and
then, after checking the small gain condition
(7) inside the region Dl we obtain the stabi-
lity region of the nonlinear system depicted
by Ds in Fig. 2.
Application of Theorems 2 and 3. Based on
(12) the matrixW (s) = L £HeAtB¤−K−1:
W (s) =


2s (s− 5)
Q (s)

− 1

k1
− s

2 + 9s+ 10

Q (s)

s2 + 6s+ 1

Q (s)

s2 + 4s+ 3

Q (s)
− 1

k2


where Q (s) = s3 + 4s2 + 9s + 10. Checking
numerically the conditions (11) and (13) in-
side the region Dl we obtain stability regions
of the nonlinear system depicted by Dj and
Dk in Fig. 2.

(3) Computation of ||x|| and ||u|| for the lin-
ear system. For the given x (0) = [1, 0, 0]

T

one obtains L [z2 (t)] = L £eA1tx (0)
¤
=

(sI−A1)
−1 x (0) and using Parseval theo-

rem

||x||2 = ||z2||2 = ||z21||2 + ||z22||2 + ||z23||2
(27)

where

||z21||2 = d1d0 + β22d0 + 2β2d0 + d2β
2
2

2d0∆

||z22||2 = d0 + d2β
2
1β

2
2

2d0∆

||z23||2 = (β1β2 − 1)2 d2 + β21d0
2d0∆

with ∆ = d1d2 − d0, and
d2 = 4− 2β1 − β2,
d1 = 10β1 − 4β2 + 3β1β2 + 9,
d0 = 10− 3β2 + β1β2.
Based on (25) one obtains

||u||2 = ||Lz1||2 = β21 ||z11||2 + β22 ||z12||2
(28)

where

||z11||2 = d1d0 + β22d0 + 2β2d0 + d2β
2
2

2d0∆

||z12||2 = (β1 + 1)
2
d0 + d2

2d0∆

The norms ||x|| and ||u|| depend on sector
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Fig. 3. Upper bounds of the norms - a): Ix (β1), -
b): Iu (β1) by the assumptions: k1 = 0.25β1,
β2 = 1 and k2 = 0.2

bounds β1 and β2. They can be used for
optimal linear controller synthesis in the form
u (t) = LHx (t). However, we prefer the use
of the integral evaluations for ”optimal” (in
some sense) nonlinear fuzzy controller design.

(4) Computation of upper evaluations for ||x||
and ||u|| of the fuzzy controller. Taking into
account additional assumptions, the evalu-
ations (17) and (22) can be computed as
follows. For β1 ∈ [0.01, 0.6] by the additional
assumptions:

k1 = 0.25β1, β2 = 1, k2 = 0.2 (29)

one can compute δ1 from the condition (14),
the norms ||z2||, ||z1|| and the norms of
matrices ||G2|| and ||G1|| given by (19) and
(20). As a result one obtains the evaluations
Ix and Iu as the functions of the parameter
β1, as shown in Fig. 3.

(5) Choosing the sector bounds for the fuzzy
controller. Suppose for the global quality
index

I = α1Ix + α2Iu, α1 + α2 = 1, αi ≥ 0
we assume α1 = 0. In this case I = Iu
is minimal for β1opt = 0.31, (see Fig. 3b).
This value corresponds with the upper sector
bound β1opt+k1 = 0.388, and k1 = 0.25β1opt.
In this way an ”optimal” sector is obtained
in the sense that the upper evaluations of
the norms ||x|| and ||u|| are minimal (this
is not equivalent with optimality in the usual
sense: ”α1 ||x||+ α2 ||u|| is minimal”). Thus,
one can choose β1opt = 0.31. This means
that the function u = f (x) with which the
fuzzy controller is equivalent should satisfy
the following sector conditions

0.31 ≤ u1 (t)
σ1 (t)

≤ 0.388, ∀σ1 6= 0

1 ≤ u2 (t)
σ2 (t)

≤ 1.2, ∀σ2 6= 0

and σj = 0 ⇒ uj = 0, (j = 1, . . . , m), by
σ1 = x1 and σ2 = x2 + x3.



6. CONCLUSION

Stability was the basic condition for the correct
design of the fuzzy control system. We tried to use
lemmas concerning stability which give sufficient
stability conditions not very far from necessary
ones. The integral evaluations of the state and
control vectors were given and the way of how
to use them to fuzzy control systems design was
shown, as well. We suggest the following general
procedure of fuzzy controller design in the case of
linear or linearizable plant.

• First, the fuzzy controller should be designed
as linear one.

• Next, the controller can be modified so that
the resulting input-output controller function
should:
· remain nonlinearity in the bounded sec-
tor,

· guarantee that the closed-loop system
will be stable for all nonlinear functions
within this sector,

· ensure that the system responses are
not worse (in the sense of ||x|| and ||u||
minimization) than in the linear system.

The modification of the controller function can be
made heuristically or using one of the methods of
learning or adaptation.
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