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Abstract: In this paper the history of analytic, or synthesis, methods for linear
feedback system design will be reviewed. The term analytic design is used to define
design methods where an existence theorem is available, and when a solution is
known to exist, a computable algorithm for computing a solution is available.
Examples of analytic design discussed in this paper include, pole-placement, linear-
quadratic control, mean-square control, Youla parameterization, gain and phase-
margin optimization, and robust stabilization.
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1. INTRODUCTION

In this paper we will review the history of an-
alytic feedback design. This review is limited to
linear time-invariant systems, characterized by
transfer functions or state-space equations. The
term feedback design implies the determination of
a compensator which meets specifications, given
a mathematical model of the system to be con-
trolled (plant), with compensator and plant in a
feedback configuration. The term analytic design
is defined to be any design technique which in-
cludes the following two elements:

1. An existence theorem which can be used to
test for the existence of a solution to the design
problem.

2. A computable algorithm which finds the solu-
tion, when one is known to exist.

This is a fairly standard definition, and the term
synthesis is often substituted for analytic design
in the the control literature. The two terms will
be used interchangeably in this paper. In contrast
to analytic design methods, we have ad hoc design

methods, where typically no existence theorem is
available, and solution are sought for using trial-
and-error methods, with no guarantee of conver-
gence.

Unfortunately, many “practical” design problems
do not have “analytic” solutions, and one has no
choice but to resort to some ad hoc design method.
In additions most analytic methods result in high
order compensators. However it is often valuable
to know about analytic solutions, and when they
are available. A simple example of analytic design
is the use of the Nyquist stability criterion, to
design a stabilizing constant-gain compensator for
a single-input-single-output (SISO) plant. In this
case, a Nyquist plot may be used to determine
whether a stabilizing gain K exists, and by se-
lecting the gain to result in the proper number
of encirclements of the —1/K point, a stabilizing
solution can be found. However, if a dynamic com-
pensator is to be explored, the Nyquist criterion
can be used only in a trial-and-error way.

A third design class, not reviewed here, is what is
sometimes called, numerical design. In numerical
design there generally is no explicit existence the-



orem, but a numerical algorithm is available which
is know to converge to a solution when one exists.
An example of a numerical design is the use of
LinearMtrix Ine qualities(LMIs) to determine a
state-feedback control law which stabilizes a given
plant. See, for example, Boyd et al. (1994).

2. EARLY RESULTS

Perhaps one of first analytic-feedback-design re-
sults appeared in a studs) by mes Clarke
Maxwell oftlihlé stea m-engine governor,
published in 1868 Maxwell (1868). In this paper
Maxwell derived conditions on the a linearized
model of the closed-loop system for stability,
which are sometimes referred to Dorato (2000a)
as Mazuell s stability criterion for cubic polyno-
mials. In particular he showed that the closed-loop
system is stable if alffichentoehe cubic
polynomial

3 2
p(s)=a15”> +azs® +azs + aq
are positive and,
asas — araq > 0.

The ffioeenteare functions of the stea m-
engine and governor parameters. The above in-
equalities can then be used to determine if a
stabilizinf§-ball governor exits , and by selecting
parameter values that satisfy the inequalities, a
stabilizing governor can be designed. Although
this was an analytic result for a very special
problem, stable control of steam engines played
a critical role in the industrial revolution of the
twentieth century.

In the period from 1870 to 1930, feedback con-
trol was used in a number of systems, perhaps
most notable being the vacuum tube amplifier,
but most designs were done by ad hoc methods.
In 192 Harry Nyquist Nyquist (192 ) published a
frequency-domain based stability criterion which,
as noted in the Introduction, may be used as
the basis for analytic design of a stable feedback
system, if the the compensator is limited to a
pure gain. If a dynamic compensator is required,
the Nyquist stability criterion provides only ad
hoc guidance to a final design. The text of Isaac
Horowitz Horowitz (1963) has the term synthesis
in its title, but it is based on ad hoc use of the
Nyquist criterion, and does fit the definition of
synthesis given here.

In 192 , NorberWner developed his theory

on optimal mean-square filtering. The result were
finally published in 1949 Wiener (1949). Based on
these result, analytic techniques were developed
for the design of feedback systems which mini-
mized a mean-squared performance measure using
frequency domain concepts ( e.g. spectral factor-
ization). In the text of Newton, Gould, and Kaiser,

G.C. Newton et al. (1957) is devoted entirely to
analytic mean-square design. Thébbaxt of G.
Truxal Truxal (1955) includes the term synthesis
in the title, however the only chapter that deals
with synthesis, as defined here, is a chapter on
optimal mean-square design.

An excellent review of the history of control en-
gineering for the period 1800-1955 may be found
in the two volumes of Stuart Bennett, Bennett
(1979), Bennett (1993).

3. THE STATE-SPACE REVOLUTION

At the First TFAC Congress of 1960, Rudy
Kalman Kalman (1960) introduced the control
community to state-space concepts, where the sys-
tem to be controlled is characterized by matrix
equations of the form,

&= Az + Bu, y =Cz+ Du (1)

where the vector z represents the state of the
system, u the control input, andghe output.
Kalman also introduced the concepts of control-
lability and observability for state-space equation
of the form in (1). In particular the system is
controllable if

rank[B AB A’B..A"'B]=n
and observable if

rank[C' A'@ 20'.(4 O =

wherris the size of the s quare system matrixA4

One of the first analytic design techniques that
resulted from the new state-space approach was
that, if a system is controllable, the closed-loop
eigenvalues can be arbitrarily located in the com-
plex plane (pole assignment). See, for example
Wonham (1967), for the general multi-input re-
sult. This result may be summarized as follows:

Designidblem  : Find a state-feedback control
law, v = —Kuzd, such that the eigenvalues of
A  take on arbitrary given values.
Ezistendeorem  : A solution exists if the system
in Equation (1) is controllable.

Solution: ThMT  LAB function place directly
computes the matrix K, given a vector of desired
eigenvalues p. The algorithm for place is based on
the computation of generalized eigenvectors.

With the introduction of Pontryagin s maximum
principle and Bellman's dynamic programming,
see for example Athans and Falb (1966), in the
late fifties, analytic design techniques for opti-
mization of integral-quadratic performance mea-
sures became available. This type of design is
referred tdlas inear@adratic LQ) design. A



typical analytic LQ design result is the following;:

Design Problem: Find a state-feedback control
law, v = —Kz, which yields a stable close-loop
system and minimizes the performance measure,

V= / WOyl +uOROM  (2)
0

Existendeorem  : A solution exists if the system
is controllable and observable, and the matrix R
is positive definite.

Solution: The matrix K may be computed the
solution of an algebraic Riccati equation (ARE),
which in turn may be solved by the computation
of eigenvalues and eigenMdtors. The LAB
function lgr directly computes K.

In 196 , Kalman and Bucy Kalman and Bucy
(1964 ), solved tB¥ener filtering proble  m using
state-space methods. They were able to design
a filter which generated a mean-square optimal
estimate, &, of the state x when the output was
corrupted with white noise. The optimal filter
required a solution of a Riccati equation, and the
filter was of the same order as the plant.

In 1963, Gunckle and Franklin Gunckel and
Franklin (1963) solved the problem of optimiz-
ing the expected value of an integral-quadratic
performance measure, using state-estimate feed-
back for discrete-time systems. It was shown that
the state-estimate feedback control law could be
computed from v = —Kz, where K was com-
puted from the deterministic LQ problem (sep-
aration principle). The net result was that an
analytic design procedure became available for
mean-square optimization of systems with noisy
output-feedback. The theory for linear-quadratic
design was presented in detail in two texts which
appeared in the early seventies, i.e. Anderson and
Moore (1970) and Kwakernaak and Sivan (192 ),
and some updated material appears in the re-
cently published text Dorato et al. (2000).

4. RETURN TO THE FREQUENCY DOMAIN

The mid-seventies witnessed a return to frequency
domain methods for analytic design. In 1974,
Youla et al., Youla et al. (1974), investigated the
the problem of stabilizing a feedback system with
a stable compensator. their analytic design results
can be summarized as follows:

Design Problem: Given a SISO Plant, with ratio-
nal transfer funtion s), find a stable compen-

sator which stabilizes the feedback system (unity
feedback).

Existence Theorem: A stable stabilizing compen-
sator exists if and only if between each pair of
zeros on the non-negative real s-plane axis there
is an even number of poles (parity- interlacing
property, p.i.p.).

Solution: The problem of finding a stable compen-
sator is reduced to interpolating at the zeros of the
plant in the right-half s-plane with a BIBO unit,
i.e. a BIBO stable function whose inverse is also
BIBO stable. Details of an algorithm to compute
the required unit may be found in Vidyasagar
(1985). It should be noted that the stable com-
pensator may be of higher order than the plant.

While a stable compensator may not often be a
direct desigetile , it is important to know
when one cannot stabilize with a stable compen-
satorMbst introductory control text books li mit
their discussions of ad hoc design procedures to
stable compensators, e.g. lead-lag, but for some
plants no stable stabitig compensator  exists. It
helps to know this before spending too much time
with trial-and-error procedures. If design specifi-
cation go beyond simple stabilization, an unsta-
ble compensator may be required even if p.i.p
is satisfied. For stable plants a stable stabilizing
compensator always exists, and it is advantages
to implement a stable compensator in this case,
to preserve a stable open-loop system in case of
sensor failures.

In 1976, Youla et al., Youla et al. (1976), pre-
sented a frequency domain approach to the mean-
square feedback design problem for multi-input-
multi-outpMI MO) systems. A very important
analytic design result included in this study re-
lates to the parameterization of all stabilizing
compensator, now commonly referred Yo as  oula
parameterization. This analytic design result may
be summarized as follows:

Problem: Given a rational transfer-function ma-
trix @ , find a parameterization of all compen-
satordd) which will sta®jlinea feedback
configuration.

Ezistence Theorem: A parameterization exists for
any plant.

Solution: If the plant is expressed as matrix frac-
tions, G§) = A~'(s)B{) =(B; s)A7'(s) where
A, B and A;, Bjare any left-right copri me poly-
nomial matrices, then all stabilizing may be pa-
rameterized as follows,

D=+A 1Q)X -B.Q)!

wereX ,Y are polynomial matrices which satisfy
the matrix Bezout identity,

AQXH) +4K) =1

and Q(s) is any stable rational matrix. The
MATLAB function youla may be used to do all



the required computations. For the simple choice
Q(s) = 0, the order of the compensator is the
same as the order of the plant.

In 19837 ames and Francis, Zames and Fran-
cis (1983), introduceH *° norms for frequency
domain design. THie *°-norm of BIBO stable
function Gf) is dendfigl| oo and defined as

IGO o = sup|Gfe) |

An example of an analytic design result reported
in their paper may be stated as follows:

Problem: Find a compensator Df) such that the
closed-loop system is stable and/the °°-norm of
the weighted sensitivity function

W(s)(1+D s)Gf)
is minimized.
Ezistence Theorem: A solution always exists.
Solution: The solution is reduced to finding a
BIBO stable function which interpolates at un-
stable zeros of the plant G§). The interpolation
problem can by solved by the Nevanlinna-Pick
interpolation algorithm.

In 1984, Hidenori Kimura, Kimura (1984), applied
H® concepts to the analytic design of compen-
sators which guarantee robust closed-loop stabil-
ity for unstructured plant variations. The exis-
tence of a robustly stabilizing compensator de-
pends on the existence of a bounded-real function
(BIBO stable functionAvith ~ °° bounded by one)
which interpolates at unstable poles of the plant.
Details may be found in the cited reference.
UsingH *° theory, Allen Tannenbaum, Tannen-
baum (1980), presented an analytic design ap-
proach to gain-margin optimization, and subse-
quently extended the result to phase-margin opti-
mization, Khargonekar and Tannenbaum (1985).
Details may be found in the cited references and
the text Doyle et al. (192 ). Gain and phase-
margin designs are generally presented in intro-
ductory control texts, as ad hoc procedures. Ref-
erence Dorato (2000a) presents in an introduction
to analytic design using interpolation concepts
outlined above.

In 1989, Doyle et al. Doyle et al. (1989) presented
a state-space solutioH to the °° control problem,
reducing the problem to the solution of two Ric-
cati equations.

5. CONCLUSIONS

Analytic design provides useful answers to a num-
ber of specific control problems. However, some
problems have no analytic solution, and one most
resort to ad hoc, trial-and-error, procedures or

to numerical procedures. This is almost always
the case when the compensator is required to be
of fixed structure and low order. Approaches to
design when analytic results are not available are
presented in Dorato (2000b).
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