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Abstract: This paper deals with the task of pameter  identification using the Bayes 
estimation method, which makes it possible to take into account the differing 
consequences of positive and negative estimation errors. The calculation procedures are 
based on the kernel estimators technique. The final result constitutes a complete 
algorithm usable for specifying the value of the Bayes estimator on the basis of an 
experimentally obtained random sample. An elaborated method is provided for nu- 
merical computations. In part~cular, an exemplary application to a random time-optimal 
control for nonlinear mechanical systems is described. Copyright 0 2002 IFAC 
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1. INTRODUCTION 

One of the elementary issues of contemporary 
engineering is parameter identification, i.e. the 
specification of the value of a parameter. In the case 
typical for engineering applications, its realizations 
are directly measurable (observable). In that 
situation, one has - not knowing the I'true'' value of 
the parameter x - its m measurements x, , x2, ... , 
x, , obtained by using independent experiments, and 
in practice burdened with errors of varying origin. On 
the basis of these measurements, that number .? 
which would most nearly approximate the "true" (but 
unknown) value of the parameter x must be 
determined. If such measurements can be treated as 

the sum of the "true" value and the random disturban- 
ces, then the task from the mathematical point of 
view becomes a typical problem for point estimation, 
while 2 is called the estimator of the parameter x 
(Lehmann, 1983). 

The procedures generally used for specifying the 
estimator, such as the least squares or maximum 
likelihood methods, are noted for their great 
simplicity and general availability in the literature; 
however, they do not make it possible to take into 
account the differing consequences of positive and 
negative estimation errors. Yet in engineering 
practice it often turns out that one of the two has only 
a minor impact on the quality of work of the device, 
while the other has a far more profound influence, 
not excluding system failure. 

The author is also Head of the Department of Control 
Engineering at the Cracow University of Technology, 
Poland. 

The Bayes estimation method (Lehmann, 1983; 
Section 4.1) used in this paper to solve the problem 
of parameter identification has no such shortcomings. 
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The calculational procedures worked out below will 
be based on the kernel estimators technique (Silver- 
man, 1986; Wand & Jones, 1994). The final result is 
a complete usable algorithm for specifying the value 
of the parameter estimator, which in a natural way 
makes it possible to take into account the consequen- 
ces of estimation errors differing in size and sign. 

The method presented in this paper is published more 
fully in article (Kulczycki, 2001) with reference to 
applicational aspects described in (Kulczycki, 1999a, 
1999b, 2000, 2002% 2002b, 2002c; Schider & 
Kulczycki, 1997). 

2. BAYES ESTIMATION 

Assume the probability space (R, C, P )  , where R 
denotes the set of elementary events, C means its 
a-algebra, and P is a probability measure. Suppose 
that the real random variable X : R + IR represents 
the measurement process, and its realizations are 
interpreted as the particular independent 
measurements of the value of the estimated 
parameter x. Consider also the loss function 
I : IR x IR + IRu{h) ; its values l(2,  x) denote the 
losses which may be incurred by assuming i as the 
estimator, whereas the "true" (but unknown) value of 
the estimated parameter is x. Let Ib : IR + IR U {km} 
be a function of the so-called Bayes losses 

I b  (3 = J l ( i , X ( w ) )  dP(0)  9 (1) 

where J R  . dP(o) denotes the integral with respect 
to the probability measure P. Therefore, l b ( i )  
constitutes the expectation value of losses if the value 
i is assumed. Every element i b  E IR such that 

R 

is known as a Bayes estimator. For details see 
Section 4.1 of book (Lehmann, 1983). 

In the present paper, consideration will be given to an 
asymmetrical form of the loss function 

- p , ( i - x )  if 
3 (3) p 2 ( i - x )  if G-xzO 

I &  x) = 

where p I , p 2  > O .  The constants p ,  and p 2  
constitute, therefore, the coefficients of proportiona- 
lity of losses suffered after obtaining a value of the 
estimator that is either smaller or greater than the 
"true" value of the estimated parameter, i.e. for 
negative and positive estimation errors, respectively. 
With the values p,  and p z  given, one can easily 
calculate the quantity r such that 

- PI 
PI - P2 (4) r = -  

P l + P 2  p 1 + 1  
P2 

It is shown in (Kulczycki, 2002a) that if the quantile 
of order r is uniquely defined, then it constitutes the 
Bayes estimator for the loss function given by 
formula (3). (In practice, the notion of the quantile of 
order r means such a real value q that the probabili- 
ties of the intervals (-w,q] and [q,w) amount to r 
and 1 - r , respectively.) 

The following will present the practical procedure 
(Kulczycki, 2001) for calculating the value of the 
quantile using the kernel estimators technique, which 
in accordance with the above result will complete the 
solution of the Bayes method for the point estimation 
task considered here. 

3. KERNEL ESTIMATORS TECHNIQUE 

The kernel estimator of the density function of the 
real random variable X ,  calculated on the basis of m 
realizations x l ,  x,, ... , x,, is defined in its basic 
form by the dependence 

( 5 )  

where the measurable and symmetrical function 
K : I R + [ O , o o )  with a unique integral and a 
maximum in point zero is called the kernel, while the 
positive constant h is known as the smoothing 
parameter. Detailed information concerning the rules 
for choosing the function K and fixing the value of 
the parameter h is included in books (Silverman, 
1986; Wand & Jones, 1994). Especially, the approxi- 
mate value of the optimal (in the mean squared 
sense) smoothing parameter can be calculated by 
assuming the normal distribution; one then obtains 

h =  ( V K ;  -&- A)"B , 

while 

On the other hand, the choice of the type of the 
kernel K does not have a major impact on the 
statistical quality of estimation, and in practice it 
becomes possible to take into account primarily the 
desired properties of the estimator obtained, e.g. the 



simplicity of calculation or the finiteness of the 
support, etc. 

In many applications, it proves to be particularly 
advantageous to introduce the concept of modifica- 
tion of the smoothing parameter. The estimator can 
then be constructed in the following manner: 

the kernel estimator j is calculated in accor- 
dance with basic dependence (5 ) ;  
the modifying parameters si > 0 ( i  = 1 ,  2, ... , 

m) are stated as 

-112 

si =(+) , (9) 

where b ienotes $e geometrjc mean of the 
numbers f ( x , )  , f ( x 2 ) ,  ... , f ( x , ) ,  given in 
the form of the logarithmic equation 

the kernel estimator with the modified smooth- 
ing parameter is defined by the formula 

1 " 1  
mh si 

j ( x )  =- 

One of the essential features of such an estimator 
consists in its slight sensitivity to the exactness of the 
choice of the parameter h. In practice, when the 
modification procedure is applied, it quite often 
proves sufficient to accept the approximate value 
given by dependence (6). 

A detailed description of the above technique can be 
found in books (Silverman, 1986; Wand and Jones, 
1994). 

4. THEALGORITHM 

To continue the considerations of the previous sec- 
tion: if the kernel K is positive and has the primitive 
given by 

then the estimator of the distribution function k with 
modified smoothing parameter can be described as 

and, therefore, the estimator of quantile of order r, 
denoted hereinafter as 4,  is uniquely defined by the 
following equation (Kulczycki, 200 1): 

That estimator is strongly consistent; for a proof see 
(Kulczycki & Dawidowicz, 1999). Moreover, the 
estimator 4 may be calculated recurrently using 
Newton's method as the limit of the sequence 
{$};='=, defined by the formulas 

* k  
i k + l  = ik  + r - F ( q  ) for k = O,l, ... , (16) 

hik> 
since,Aaccording to dependencies (1 1)-(13), the func- 
tion f constitutes the derivative of the mapping fi . 
For the purposes of the method elaborated here, the 
kernel 

e-x 

(1 + e-x)2 
K ( x )  = 

can be proposed. It fulfills all the requirements 
formulated above, and in particular its primitive has a 
form convenient for calculations, namely: 

1 
I+e-' 

I ( x ) = -  ~ 

In this case, the quantity Vk occurring in dependence 
(6) amounts to 

3 V,=- . 
2x4 

For details of the presented method, see (Kulczycki, 
200 1). 

5 .  FINAL SUGGESTIONS AND EXEMPLARY 
APPLICATION TO NONLINEAR OPTIMAL 

CONTROL 

The substance of this paper provides complete 
material defining the practical algorithm used to 
calculate the Bayes estimator for loss function (3). It 
is assumed that m independent measurements xl ,  
x2 3 9 x, of the estimated parameter x are 
available. Based on prior process knowledge, the user 
should also identify the ratio p1 / p 2  which characte- 
rizes the proportion of losses resulting from negative 
and positive estimation errors, i.e. underestimating or 
overestimating the parameter. It is then easy to 
successively calculate the following values: 

(A) the order r of the quantile - from the second 

(B) the smoothing parameter h - on the basis of 
part of formula (4), 

dependence (6), along with (8) and (19), 



(C) quantities j ( x i )  for basic form (9, applying 

@) modifying parameters si - thanks to proce- 

Since the forms of the functions K and I are given by 
dependencie? (17) and (18), and in turn the kernel 
estimators f and @ by formulas (1 1) and (13), then 
all the quantities needed to apply algorithm (15)-(16) 
have already been defined. This is tantamount to 
specifying the value of the Bayes estimator. 

also equality (17), 

dure (9)-( 10). 

The estimator obtained in this fashion is strongly 
consistent, i.e. with probability 1 it converges on the 
proper value along with the increase in the size of 
sample. The strict formulation of this fact, under 
very mild assumptions, is presented in paper 
(Kulczycki & Dawidowicz, 1999). It should be 
emphasized that the quite general condition of the 
uniqueness of the quantile of order r, fulfilled e.g. 
when the random variable X has a density function 
with a connected support, is in practice the only 
limitation on the possibility of applying the method 
proposed in this paper. 

The correct functioning of the algorithm here 
designed has been comprehensively verified using a 
numerical simulation, Random disturbances of 
various distributions, including asymmetrical, long- 
tailed, and multimodal, were subjected to testing. The 
results obtained for normal standard distribution are 
shown in columns (a) of Tab. 1. For simplicity, the 
parameter being estimated had the value zero. 

When p,  = p 2 ,  i.e. given the assumption that negati- 
ve and positive estimation errors entail the same 
losses, the Bayes estimator and the classical sample 
mean are conditioned analogously, which renders it 
possible to compare the results that are obtained by 
using them. Columns (a) and (b) for p 1  = 1 ,  p 2  = 1 
in Tab. 1 indicate that their precision was compar- 
able. In the case of the Bayes estimator, however, it 
is more important that, if pl f p 2 ,  then its value was 
properly shifted in the direction of those errors for 
which the parameter p,  or pz  was less (see columns 
(a) in Tab. 1, keeping in mind that the standard 
deviation of the random disturbances was 1). 

The results obtained by using the quantile estimator 
worked out in Section 4 were more precise in 
comparison with those generated by other quantile 
estimators available in the literature, especially with 
small sample sizes (e.g. compare columns (c) and (d) 
in Tab. 1 created for the estimators proposed in this 
work and for Y, recommended in survey paper 
(Parrish, 1990), respectively). 

In sum, for pl = p 2  the proposed algorithm yields 
results that are comparable to those obtained using 
the sample mean, while assuming different pl and 

p 2  opens up possibilities that are unavailable for this 
classical method: to properly shift the value of the 
estimator in the direction associated with smaller 
losses. The Bayes estimation method proposed here 
is natural, easy to interpret and use in practice. 

For details of the method, see (Kulczycki, 2001). 

The algorithm presented here has also been success- 
fully applied to the random time-optimal control for 
nonlinear mechanical systems, whose dynamics are 
described by the following differential inclusion: 

Y ( t )  E H(Y( t ) ,Y ( t ) , t )  + U ( t )  , (20) 

where Y denotes a position of the object, U is a 
bounded control variable, and the function H 
represents a multivalued discontinuous model of 
motion resistance 

f m t ) , Y ( t ) , t )  =X(I'(t>,Y(t),t) *F(I'(t)) 3 (21) 

while X denotes a continuous mapping, and F means 
a piecewise continuous function that may be 
additionally multivalued at the points of 
discontinuity. If one omits this factor, i.e. when 
H aO, inclusion (20) is reduced to the classical 
differential equation that expresses the second law of 
Newtonian mechanics. This problem is of 
fundamental significance, especially in the control of 
industrial manipulators and robots. The task of time- 
optimal control consists here in bringing the object 
state to the target [Yl" ,Yp IT E IR2 in a minimal and 
finite time. Since the solution of this issue by 
deterministic methods, mainly due to complex form 
of the function X,  has proven to be impossible 
without significant trivialization of the model (21), a 
probabilistic concept was proposed in articles 
(Kulczycki, 1999% 1999b). Namely, the values of the 
functionXhave been treated as the realizations of the 
random variable x. 

Assume .C as a fixed real number, and suppose that 
[Y1+,Y;lT and [Yl-,YClT are solutions of the 
differential equation related then to system (20)-(2 1): 

y, (0 = y2 (0 
I'2 (t) E i F(Y2 (t))  + U ( t )  

(22) 

(23) 

with the condition [Y: (01, Y: (o)lT = [Y; (01, 
Y2-.(0)lT = [Ylm,YZmlT, defined on the interval 
(-w,O], and generated by the control U = + l  or 
U = -1, respectively. Moreover, consider 

K t  = { [Yl+ (t) ,  Y: (t)lT for t < 0 } (24) 
K- = { [Y,- ( t ) ,Yy  (t)lT for t < 0 } ; (25) 

therefore, these are the sets of all states which can be 
brought to the target by the control U = + 1  or 
U I -1, respectively. Let also 



( 2 = 0 2  ; r=0,167 ) I  
'1 I1 

l . o  1/ -1,007 I 0,152 1 0,162 I/ 
-0,993 0,108 0,115 

'I 4 

200 11 -0,980 I 0,075 I 0,081 11 

1 :oi 11 -0,698 I 0,138 1 0,154 1 
-0,690 0,099 0,107 

200 -0,682 0,069 0,075 
1 5 0 0 p , 9 7 2  I 0,049 I 0,053 11 

-0,967 0,034 0,037 
11 ,',",", 1-0,677 I 0,045 I 0,048 11 

-0,674 0,031 0,034 

(1 i: 11 -0,008 I -0,005 I 0,268 I 0,293 11 
-0,004 -0,003 0,200 0,222 

11 50 I( -0,005 I -0,007 I 0,125 I 0,138 11 1 ill 1/ -0,003 1 -0,003 1 0,089 1 0,099 1 
-0,001 -0,001 0,064 0,070 
-0,002 -0,002 0,041 0,044 I A M I l  

-0,462 0,279 0,310 
-0,451 0,206 0,229 

50 11 -0,447 I 0,130 1 0,145 1) pz: (I -0,442 1 0,093 1 0,105 11 
-0,436 0,065 0,072 

Tab. 1. Results obtained for parameter zero and disturbances with standard normal distribution: 
(a) value of the Bayes estimator proposed in this work, 
@) value of the classical sample mean (only for p 1  = 1,  p 2  = l ) ,  
(c) precision (in relation to theoretical) of the quantile estimator proposed in this work, 
(d) precision (in relation to theoretical) of the estimator Y, recommended in survey paper (Parrish, 1990). 



R +  ={  [Y1,Y2lT € I R 2  such thatthereexists 

[Y;,Y2lT E K  with Yi <y; 1 

reflection of an entire array of phenomena, reduced 
to a single constant due to the necessity to simplifj 
the model, Then the issue consists not so much in 
approaching the “true” value (since no such thing 
exists), but rather in specifying the best possible 
characterization of these phenomena using a single 
number. From the mathematical point of view, the 
formalism of statistical decision theory (Berger, 
1980) is then appropriate, although the results 
obtained using the Bayes decision rule are in such 
case identical with those presented in this paper for 

(Z6) 

R-  = {  [Y1,Y2lT E IR2 such thatthereexists 

[Y;,Y2IT E K  with Y: <Yl } (27) 

where K = K- U { [Y,“l, Y F  IT }U K+ . The time- 
optimal control is then expressed by the formula: 

(28) 

and the set K constitutes a switching curve (Kulczy- 
cki, 1999% 1999b). 

In the time-optimal feedback controller equations, i.e. 
formulas (24)-(28), the parameter 2 intervenes, 
because it influences the form of the trajectories 
[Y,’,Y,fIT, [YI-,Y;lT and therefore also the shape 
of the switching curve K. In the event that this 
parameter is underestimated, sliding trajectories 
appear in the controlled system, increasing the time 
to reach the target proportionally to the magnitude of 
the underestimation. If, however, it is overestimated, 
over-regulations occur in the system, with a much 
greater impact on the increase in the time to reach the 
target (likewise proportionally to the value of the 
overestimation), in the extreme case threatening 
failure of the device. 

For details of the above random time-optimal control 
task, see articles (Kulczycki, 1999% 1999b). 

In the practical application considered here, the value 
of the parameter 2 was estimated using the proce- 
dure of Bayes estimation described in this paper. This 
assured the proper operation of the controlling 
system, while the speed of its operation made 
possible effective adaptation to changing external 
conditions. The calculation was performed for 
p ,  / p = 0,2 ; thanks to this, more desirable sliding 
trajectories clearly dominated in the controlled 
system. In conclusion it should be strongly 
emphasized that the designed control structure turn 
out to be only slightly sensitive to the inaccuracy 
resulting from identification and the occurrence of 
perturbations. Such robustness should be emphasized 
as a very valuable property of uncertain, especially 
random, control systems. 

The foregoing applicational example points up an 
engineering interpretation of the issue, somewhat 
exceeding the strict mathematical point estimation 
formulation presented in the Introduction. The 
parameter under consideration may in fact be the 

- .  
the task of point estimation. 
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