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Abstract: Whereas the use of traditional Monte Carlo simulation requires probability distri-
butions for the uncertain parameters entering the system, distributionally robust Monte Carlo
simulation does not. According to this new theory, instead of carrying out simulations using
some rather arbitrary probability distribution such as Gaussian for the uncertain parameters,
we provide a rather different prescription based on distributional robustness considerations.
Motivated by manufacturing considerations, a class of distributions F is specified and the
results of the simulation hold for all f ∈ F . This new method of Monte Carlo simulation was
developed with the robustician in mind in that we begin only with bounds on the uncertain
parameters and no a priori probability distribution is assumed. Copyright c© 2002 IFAC

1. INTRODUCTION

When the model a system depends nonlinearly on un-
certain parameters, a Monte Carlo analysis is often in-
sightful when mathematical manipulation of the equa-
tions would otherwise be prohibitive; e.g., see [2]. The
focal point of this tutorial paper are questions of the
following sort: For the case when there is little or no
statistical description of the random variables entering
a system, what Monte Carlo simulation procedure, if
any, is appropriate for analysis?

This tutorial survey describes the new approach to
Monte Carlo simulation which originates in [3] and
[4]; see [1] for the full version of the paper. Whereas
the use of traditional Monte Carlo simulation soft-
ware requires probability distributions for the uncer-
tain parameters as input, distributionally robust Monte
Carlo simulation method of this paper does not. In-
stead, similar to classical robustness theory, the un-
certain parameters are described solely in terms of
their bounds with no a priori statistics assumed. In
this setting, instead of carrying out simulations using
some rather arbitrary probability distribution such as
Gaussian, we provide a rather different prescription
for simulation based on distributional robustness con-

1 Funding for this research was provided by the National Science
Foundation under Grants ECS-9811051 and ECS-9984260.

siderations. More specifically, motivated by manufac-
turing considerations, we define a class of probability
distributions F and prescribe a method of simula-
tion which leads to conclusions which hold robustly
for all f ∈ F . To this end, the theory characterizes
some distinguished distribution f ∗ ∈ F with which
the simulation should be carried out. In this sense, our
approach is a posteriori in nature.

In a sense, this new method of Monte Carlo simula-
tion was developed with the robustician in mind. That
is, the motivation for this new approach is derived
from the fact that robusticians often object to classi-
cal Monte Carlo simulation on the grounds that the
probability distribution for the uncertain parameters is
unavailable. In classical robustness analysis with para-
metric uncertainty, for example, see [41], one starts
only with bounds on the uncertain parameters and no
a priori probability distribution is assumed. This is
the same starting point for the probabilistic method
provided here.

This distinction between a priori and a posteriori
probability distributions is what makes the distribu-
tional robustness approach different from many which
appear in the systems literature. Be it the Monte Carlo
analysis and design methods in papers such as [9],
[12]–[18], [20], [21] and [33]– [35], the learning the-
ory approach as in [38], the simulations based on
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Fig. 1. Mass-Spring-Damper System

sample size considerations as in [35] and [36], in each
case an a priori probability distribution is assumed
for simulation purposes. For the plethora of cases for
which such information is available, there is no need to
consider the methods described in this paper. Finally,
is should also be noted that the literature is abound
with other approaches to uncertain parameters with
even more significant differences in starting assump-
tions; e.g., see [19], [22] and [34].

1.1 Example

To illustrate the issue addressed in this paper at the
most basic of levels, consider the mass-spring-damper
system of Figure 1 with applied force u(t), unit
mass M = 1, uncertain spring constant 0.2 ≤ k ≤ 0.8
and uncertain damping constant 0.3≤ c≤ 0.9. In view
of the parameter uncertainty above, at frequency ω ≥
0, the gain of the system relating displacement for
equilibrium to the applied force

g(ω,k,c) =
1√

(ω2 + k)2 + c2ω2

may vary. In studying such variations, a classical
Monte Carlo simulation dictates assignment of proba-
bility distributions to the uncertain parameters k and c.
Subsequently, one generates samples k1,k2, . . . ,kN ,
c1,c2, . . . ,cN and computes an estimate

ĝ(ω)
.
=

1
N

N

∑
i=1

g(ω,ki,ci).

With regard to the issue under consideration in this
paper, the main point to note is that the value of ĝ(ω)
obtained via Monte Carlo simulation can change dra-
matically based on the probability distributions as-
signed to k and c. To illustrate, at frequency ω = 0.01,
if one models highly imprecise manufacturing values
for k and c with a uniform distribution, the expected
value of the gain is ĝ(0.01)≈ 2.31. On the other hand,
if one postulates a highly precise manufacturing pro-
cess with normal distribution centered on the intervals
for k and c and having standard deviation σ = 0.01,
the result becomes ĝ(0.01) ≈ 2.00. This significant
difference between the two computed gains poses a
dilemma for the systems engineer when no a priori
probability distributions for k and c are given.

2. PRELIMINARIES

With the mass-spring-damper example above in mind,
we entertain one objection to Monte Carlo simu-
lation which the robustician may raise: Namely, in

the absence of a priori probability distributions for
the uncertain parameters qi, the results of a classi-
cal Monte Carlo simulation may be highly suspect.
It turns out that, when working in a distributional
robustness framework rather than a classical robust-
ness framework, it is often the case that a larger ra-
dius of uncertainty can be tolerated while keeping
the risk of performance violation acceptably small.
Moreover, when uncertain parameters enter nonlin-
early into the system equations, it is often the case that
a Monte Carlo approach based on distributional ro-
bustness considerations is computationally tractable,
whereas a robustness approach is not.

2.1 Uncertainty Notation

We consider a system with uncertain parameters

q
.
= (q1,q2, . . . ,q`) ∈ R`

and given bounds |qi| ≤ ri for i = 1,2, . . . , `. Since
the variations on qi are centered at qi = 0, these
parameters are viewed as deviations from the so-called
nominal. To illustrate, for the mass-spring-damper
system of Section 1.1, the spring constant is expressed
as k = 0.5 + q1, |q1| ≤ r1, r1 = 0.1 and the damping
constant as c = 0.625 + q2, |q2| ≤ r2, r2 = 0.125.
With this notation, the set of admissible uncertainties
Q

.
= {q : |qi| ≤ ri for i = 1,2, . . . , `} is a hypercube in

the `-dimensional parameter space.

2.2 Robustician’s Point of View

Given a performance specification, call it Property P ,
classical robustness analysis implicitly accounts for
the shapes of the good set

Qgood
.
= {q ∈ Q : P is satisfied}

and the bad set

Qbad
.
= {q ∈ Q : P is violated}

in parameter space.

A metaphor to describe the conservatism associated
with classical robustness analysis is provided by Fig-
ure 2. In many cases, especially when the dimen-
sion of the uncertain parameter vector q is high, the
bad set Qbad behaves as if it is a union of “icicles.”
More specifically, over a box of radius r as shown in
the figure, the volume of the bad set Qbad is quite
small compared to the total volume of Q. For the
situation which is depicted, it is noted that a classi-
cal robustness analysis leads to a tolerable radius of
uncertainty r = rmax. However, since Qbad has area
much less than that of Q, it can be argued that one
can work with larger uncertainty radii than rmax while
keeping the risk of performance violation acceptably
small. Hence, one can often justify system operation
with uncertainty radius r > rmax. Simulations based
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Fig. 2. A Two-dimensional Geometry of Qbad

on the approach in this paper indicate that the ici-
cle phenomenon described above is common and that
classical approaches tend, in general, to be very con-
servative — especially when the number of uncertain
parameters is high. These statements are substantiated
both in the sequel and in the cited references such
as [3]–[5] and [23]–[32].

2.3 Motivation for Distributional Robustness

The astute robustician might object to the analysis
of r versus rmax above on the grounds that a uniform
distribution was implicitly assumed for the vector of
uncertain parameters q. That is, the comparison of the
volumes of Qbad versus Q does not provide an indica-
tion of the risk when the probability distribution of q
is unknown. The theory of distributional robustness
to follow addresses this concern. Once an appropri-
ate class F of probability distributions is defined, we
study robustness with respect to f ∈ F .

2.4 Problem Formulation

Let F denote the class of admissible probability dis-
tributions for q. Then, for f ∈ F , we take q f to be
the associated random vector and consider a perfor-
mance measure φ(q) of the system in question. For
example, φ(q) might represent the gain of the system
at some frequency, rise time to a step input, overshoot
to a step input, etc. Equally well, φ(q) can be of a
discrete nature. For example, for a feedback system,
we can set φ(q) = 1 if stability is guaranteed with
uncertainty q and φ(q) = 0 otherwise. The first mea-
sure of interest is the probability of satisfying the per-
formance specifications; i.e., for desired performance
level γ > 0, let

Φ( f )
.
= Prob{φ(q f ) ≤ γ} =

∫

{q∈Q:φ(q)≤γ}

f (q)dq.

The second measure is the expected value of φ(q f ). In
this case,

Φ( f )
.
= E [φ(q f )] =

∫

Q

φ(q) f (q)dq.

With the setup above, the distributional robustness
problem is to find f ∗ ∈ F minimizing Φ( f ); i.e.,

Φ( f ∗) = min
f∈F

Φ( f ).

2.5 Remarks

In view of the above, a Monte Carlo simulation per-
formed with some ad hoc distribution f ∈ F instead
of f ∗ leads to an unduly optimistic estimate of perfor-
mance. From a robustician’s point of view, it is also
of interest to determine the extent to which the worst-
case performance

φ∗ .
= min

q∈Q
φ(q)

differs from the expected performance. To this end, the
basic inequality

min
q∈Q

φ(q) ≤ E [φ(q f ∗)]

is apparent.

3. THE CLASS OF DISTRIBUTIONS F

In this section, attention is turned to the class of
probability distributions F ; to this point in the paper,
this class has not been specified. The paradigm of [3]
is now described and it is argued that the definition
of F is physically meaningful for a large class of
problems.

Based on robustness considerations in the systems sci-
ences, an interval bound description of the uncertainty
is the takeoff point for the new paradigm. Motivated
in large measure by manufacturing considerations, the
fundamental assumptions in the exposition to follow
are that the uncertain parameters are independent,
large deviations in the parameters qi away from their
nominal values is less probable than small deviations
and positive and negative deviations in the qi are
equally likely. This setup, reminiscent of formulations
such as Huber’s [10] in robust statistics, involves no a
priori parameterization of the underlying probability
density functions is assumed.

3.1 Motivating Example

To motivate the definition of F , consider a circuit
with an uncertain capacitor 30 µfd ≤ C ≤ 70 µfd
which is nominally manufactured with nominal value
C0 = 50µfd. For this capacitor, the manufacturing
process is modelled by assuming that positive and
negative deviations about C0 are equally likely and
that large deviations from C0 are less likely than
small deviations. In other words, if |∆C1| < |∆C2|,
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Fig. 3. Admissible Distributions for Capacitor

then the capacitor with value C = 50 + ∆C1 is more
likely to be manufactured than the resistor with value
C = 50+∆C2. This situation is illustrated in Figure 3.

3.2 Class of Admissible Distributions F

It is assumed that the uncertainty vector q is a zero
mean random vector with independent components qi.
Furthermore, for i = 1,2, . . . , `, it is assumed that
each component qi is supported in the interval Qi

.
=

[−ri,ri]. Therefore, the support for the random vec-
tor q is the hypercube Q = Q1 ×Q2 ×·· ·×Q`. Now, a
density function fi(xi) is said to be admissible for qi if
it is symmetric and non-increasing with respect to |xi|.
More precisely, fi is an admissible probability density
function for qi if fi(xi) ≥ fi(yi), for |xi| ≤ |yi| and
fi(xi) = fi(−xi) for all xi. To make the definition of F
complete, the behavior of fi(xi) at xi = 0 needs to
be specified. In this paper, fi(xi) is allowed to be a
probability density function which contains a Dirac
delta function at xi = 0. Finally, by writing f ∈ F for
the joint density function

f (x)
.
= f (x1,x2, . . . ,x`) = f1(x1) f2(x2) · · · f`(x`)

of the random vector q f , the understanding is that
each fi is an admissible probability density function
for qi.

3.3 Distributionally Robust Performance

As indicated in Section 2.4, each admissible density
function f ∈ F results in a value Φ( f ) for system per-
formance. Now, we define the distributionally robust
cost

Φ∗ .
= inf

f∈F
Φ( f ).

3.4 Preview Example

To consolidate the development to date, an exam-
ple from the theory of robust stability, for example,
see [41], is provided to demonstrate some of the basic
ideas. For the uncertain polynomial

p(s,q) = p0(s)+
14

∑
i=1

si−1qi

with interval bounds qi ∈ [−r,r] for i = 1,2, . . . ,12 and
stable nominal

p0(s) = (s+1)12(s2 +0.002s+1),

with lightly damped roots s = −0.001± j and good
set

Qgood = {q ∈ Q : p(s,q) is stable},

we compare a classical Monte Carlo solution of the
stability problem with the robust solution. Whereas
ordinary Monte Carlo is used here, in Section 6.6,
this same problem is revisited from the distributional
robustness point of view. First, using Kharitonov’s
Theorem [42], robust stability for p(s,q) is guaranteed
if r < 0.021. Now, to illustrate an ordinary Monte
Carlo solution, let r = 0.03. Noting that this bound is
approximately 40% above the stability limit provided
by Kharitonov’s Theorem, the objective is to estimate
the risk of instability.

In accordance with the notation of the preceding
section, for a given probability density function f
for q and Φ( f ) = Prob{p(s,q f ) is stable}, the basics
of ordinary Monte Carlo simulation are illustrated
with f = u being the uniform distribution. Now, an
ordinary Monte Carlo simulation involves randomly
generating N samples q1,q2, . . . ,qN for q and creating
the relative frequency estimate for stability

Φ̂(u) =
1
N

N

∑
i=1

φ(qi).

For the moment, a sample size N = 105 is arbi-
trarily specified while noting that the choice of N
is explained in the next section. This leads to the
estimate Prob{p(s,qu) is stable} ≈ 0.99951 In other
words, with uncertainty bound approximately 40%
above Kharitonov’s limit, only a small risk of insta-
bility is obtained.

To conclude this section, it is important to remind the
reader that the probability density function f for q was
assumed a priori. Therefore, the computed probability
is simply an ordinary Monte Carlo estimate rather than
a distributionally robust estimate.

3.5 Sample Generation

The full version of this paper [1] provides an in-
dication of how one generates the random samples
and how one chooses the sample size; see also [6].
For this abbreviated exposition, it suffices to say that
of special interest to robusticians, is the problem of
generating samples uniformly distributed over a given
compact convex set; e.g., see [6], [7], [8] and [9].
In the literature on sample generation, the following
question arises: For a given uncertainty dimension `
and a given probability density function f for q, how
many samples N are required to obtain a “reliable”
estimate Φ̂N( f )? Surprisingly, with reliability defined
in terms of probable approximate correctness (PAC),



it can be shown that there are upper bounds for the
required number of samples which are independent
of both ` and f . To illustrate the use of such re-
sults, following [38], the PAC reliability criterion is
defined and illustrated using sample size bounds pro-
vided in [35] and [36]. In this framework, the esti-
mate Φ̂N( f ) is viewed as random variable and one
seeks to find probability of this quantity being in error
by no more than a prescribed tolerance ε > 0. With
this setup, an estimate Φ̂N( f ) is said to have reliability
of 0 < δ < 1 if

Prob{|Φ̂N( f )−Φ( f )| > ε} ≤ δ.

In other words, the probability of an estimation error
exceeding ε is less than or equal to δ.

With the definition above, there are many papers with
upper bounds on the number of samples N = N(ε,δ)
which are needed; e.g., see [35] and [36]; e.g., a simple
upper bound based on the Chernoff inequality is

N(ε,δ) =
ln(2/δ)

2ε2 .

Therefore, for a given ε and δ, one can look at all avail-
able bounds and take the smallest of the N(ε,δ) val-
ues obtained. For example, with ε = δ = 0.001 corre-
sponding to a 0.1% error, one obtains N ≈ 3.8×106.

4. THE TRUNCATION PRINCIPLE

The Truncation Principle of [3] is a fundamental re-
sult in the theory of distributional robustness. This
principle indicates that when minimizing the perfor-
mance functional Φ( f ) over f ∈ F , one need only
consider truncated uniform distributions. This means
that classical distributions such as truncated normal
distribution can be ignored and the prescription for
distributionally robust simulation involves uniformly
sampling only a subinterval of the uncertainty rather
than the entire interval.

4.1 Truncated Uniform Distributions

A probability density function ut(x) is called a trun-
cated uniform distribution if each of its compo-
nents ut

i(xi) is either distributed uniformly over a sym-
metric interval [−ti, ti] ⊆ [−ri,ri] for ti > 0 or zero
with probability one for ti = 0; that is, a Dirac delta
function. The interval [−ti, ti] might be different for
each uncertainty component. Using the notation

T
.
= {t = (t1, . . . , t`) ∈ R` : 0 ≤ ti ≤ ri for i = 1, . . . , `},

for t ∈ T , we take ut(x) to be the associated truncated
uniform distribution. For the special case obtained
with ti = ri for i = 1,2, . . . , `, one obtains the uniform
distribution u(x) over Q. It is also observed that the
inclusion {ut : t ∈ T} ⊆ F . holds.
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Fig. 4. RLC Circuit

4.2 The Truncation Principle

With the notation above,

inf
f∈F

Φ( f ) = inf
t∈T

Φ(ut).

4.3 Example Illustrating Truncation Principle

The Truncation Principle raises the possibility that
distributionally robust Monte Carlo simulation may
lead to results which differ significantly from what
one might obtain using a more traditional Monte
Carlo approach. That is, in the example below, taken
from [27], the Truncation Principle leads to sampling
over a subinterval of the range of qi whereas a classical
Monte Carlo analysis typically dictates sampling over
the entire range of parameter variation. In this regard,
the point of view in this paper is that traditional Monte
Carlo simulation provides an unduly optimistic esti-
mate of the performance whereas the distributionally
robust approach does not.

The RLC circuit of [27] is now studied with ran-
dom parameters corresponding to independent un-
certainties in the interstage capacitors C1 and C2;
see Figure 4. The amplifier has fixed parameters
R1 = 1000,R2 = 100,L = 0.01 and uncertain parame-
ters

0.755×10−6 ≤C1 ≤ 1.695×10−6;

0.75×10−6 ≤C2 ≤ 4.55×10−6.

For this example, the performance specification is that
the step response |V0(t)| not exceed 96.3 volts. This
leads to an interest in computing the probability that
this performance specification is satisfied.

To study this circuit using the Truncation Principle, q1

and q2 are identified with deviations from the cen-
ter points of the intervals of capacitance. Next, let-
ting V0(q1,q2, t) denote the dependence of the output
voltage on the qi and taking

r1 = 0.940×10−6, r2 = 4.8×10−6

and

Qgood
.
= {(q1,q2) : |V0(q1,q2, t)| ≤ 96.3 for all t ≥ 0},

we seek to compute

Φ∗ .
= min

f∈F
Prob{q f ∈ Qgood}.



In accordance with the Truncation Principle, a solu-
tion to this problem is obtained with marginals ut

i
which are truncated uniform distributions described
by ti . For the given uncertainty bounds for the two
capacitors variations, a two variable optimization in
the truncation variable t

.
= (t1, t2) ∈ T was carried out.

Using the Matlab rand function to estimate

pt
.
= Prob{qut

∈ Qgood}

and generating 100,000 samples for (t1, t2) pairs, the
estimate

Φ∗ = Φ(ut∗) = pt∗ ≈ 0.486

was reached with truncations given by
t1 = t∗1 ≈ 0.17×10−6 and t2 = t∗2 ≈ 0.275×10−6. It is
noted that the truncation t∗ maximizing pt is obtained
as an interior point within the rectangle of capacitor
variation.

In order to compare the result above with a traditional
Monte Carlo simulation, we take f = u to be the
uniform distribution and obtain the estimate

Φ(u) = Prob{qu ∈ Qgood} ≈ 0.6912,

which is more than 50% larger than Φ∗. The success-
ful use of the Truncation Principle to solve the circuit
problem above was facilitated by the fact that the un-
certain parameter vector q was only two-dimensional.
For problems with higher dimensional uncertainty,
finding an “optimal truncation” t∗ is generally a non-
linear programming problem. Whereas a gridding
method sufficed for the circuit illustration above, for
a high number of uncertainties, such an approach is
no longer computationally tractable. This motivates
an ongoing line of research aimed at exploiting the
structure of the probabilistic robustness problem at
hand in order to obtain an optimal truncation t∗ ∈ T .

5. THE CONVEX CASES

The first result below applies to the case when Φ( f )
is the expected value of some componentwise convex
performance function; i.e., for each i = 1,2, . . . , `, the
function φi(qi) obtained with qk held fix for k 6= i, is
convex in qi. To illustrate, for large classes of robust-
ness problems with a so-called multilinear uncertainty
structure, this componentwise convexity condition is
satisfied; e.g., one can obtain a performance function
of the form

φ(q) = 3q1q2q3 +10q1q2 −9q1q3 −q2 +15.

The second result, the Uniformity Principle in Sec-
tion 5.8, applies to the case when Φ( f ) is the prob-
ability of performance satisfaction and the set Qgood is
convex and symmetric (if q∈Qgood , then −q∈Qgood).
This case provides a solid rationale for use of the folk
theorem which says: When in doubt, use the uniform
distribution. To this end, of the results of [3]–[5] are
now described.

5.1 The Componentwise Convexity Principle

If φ(q) is convex with respect to component qk, then the
minimization of E(φ(q f )) is attained with f ∗ ∈F hav-
ing k-th component f ∗k = δ, the Dirac delta function.
Similarly, if φ(q) is concave with respect to qk then,
the minimization of E(φ(q f )) is attained with f ∗ ∈ F
having k-th component f ∗k = u, the uniform distribu-
tion.

5.2 Resistive Networks

For a large class of resistive networks described below,
it is seen that the Componentwise Convexity Principle
leads to a result which is considerably at odds with
what one obtains using Monte Carlo sampling scheme
or common sense traditional considerations; i.e, in
such a case, one should resist the temptation to sample
those uncertain parameters qk corresponding to f ∗k = δ
in the Componentwise Convexity Principle.

The situation above is more fully described in [31]
where the authors consider a planar network N con-
sisting of an input voltage source Vin, an output volt-
age Vout across a designated resistor Rout = Rn and un-
certain positive resistor n-tuple R

.
= (R1,R2, . . . ,Rn).

With qi identified with resistor uncertainty ∆Ri rep-
resenting deviations from the nominal manufacturing
value Ri,0 > 0 and gain

g(q)
.
=

Vout(q)

Vin
,

the Truncation Principle applies to the problem of
finding the maximum and minimum values of the
expected gain

E(g(q f )) =

∫

Q

f (q)g(q)dq.

5.3 Essential Resistors

For the class of resistive networks under considera-
tion, physical interpretations of componentwise con-
vexity and concavity are available. Namely, a resis-
tor Rk is said to be essential if the following con-
dition holds: There does not exist admissible values
of the n− 1 remaining resistors Ri, i 6= k making the
gain g independent of Rk. If Rk is essential, it can read-
ily be shown that, with qk = ∆Rk as identified above,
the gain is either componentwise convex or concave
with respect to qk. To make the convexity/concavity
assignment more precise, it is noted that essentiality
guarantees that the partial derivative ∂g/∂qk has one
sign over Q. Letting

sk
.
= sign

(
∂g
∂qk

)

denote this invariant sign, exploitation of the Com-
ponentwise Convexity Principle leads to the result
of [31] given below.
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5.4 Theorem

Assume that all resistors in N are essential. For
the case of maximizing E(g(q f )), define probability
density function f ∗ with marginals f ∗i as follows:
Set f ∗i = u if si = −1 and f ∗i = δ if si = 1. Then,

E(g(q f ∗)) = max
f∈F

E(g(q f )).

For the case of minimizing E(g(q f )), define probabil-
ity density function f ∗ with marginals f ∗i as follows:
Set f ∗i = δ if si = −1 and f ∗i = u if si = 1. Then,

E(g(q f ∗)) = min
f∈F

E(g(q f )).

5.5 Example

To illustrate the use of the theorem above, consider
the ladder network studied in [31] and shown in Fig-
ure 5. Applying the theorem above, it can be shown
that all resistors are essential with maximum expected
gain being attained by using ti = 0 for the inter-
stage resistors R3k and ti = ri for the remaining re-
sistors. To illustrate how this result is applied, for a
three stage network with nominal values R1,0 = R4,0 =
R5,0 = R7,0 = R8,0 = 1, R2,0 = 2, R3,0 = 3, R6,0 = 5
and R9,0 = 7, and uncertainty bounds ri = 0.8Ri,0

for the inter-stage resistors and ri = 0.1Ri,0 for the
remaining resistors, the results above indicate that a
distributionally robust Monte Carlo simulation should
be performed as follows: Hold the interstage resis-
tors R3,R6 and R9 fixed corresponding to the Dirac
delta function; i.e., do not sample these parameters
despite the fact that sampling ranges are given. For the
remaining resistors, sample uniformly over prescribed
ranges [Ri,0 − ri,Ri,0 + ri]. This sampling scheme leads
to the estimate E(g(q f ∗)) ≈ 0.1864 with n = 100,000
samples. In contrast, a more traditional Monte Carlo
simulation using the uniform distribution for all resis-
tors leads to the estimate E(g(qu)) ≈ 0.1554. was ob-
tained. In other words, the classical analysis leads to a
result which we view as over optimistic by about 20%.

5.6 Multilinearly Parameterized H∞ Norm

To illustrate a second application of the Compo-
nentwise Convexity Principle, we consider the prob-
lem formulation of [32]. Namely, the starting point

is a transfer function matrix H(s,q) which is de-
composable as a multilinear combination fixed sta-
ble transfer functions with the uncertain parame-
ters qi being the matrix multipliers. An example is
obtained from a feedback system which is set up in
the so-called M−∆ configuration with M(s) being a
square `× ` proper stable transfer function matrix and
∆(q) = diag{q1,q2, . . . ,q`}. Now,

H(s,q)
.
= det(I +M(s)∆(q))

satisfies the multilinearity requirement of this section.

Using the fact that the norm function is convex and
each qi enters affine linearly into H(s,q) with the
remaining parameters fixed, it can readily be shown
that that with performance measure

φ( f ) = ||H(s,q f ))||∞,

the uncertain parameter vector q enters in a compo-
nentwise convex manner. Hence,

max
f∈F

E
(
||H(s,q f )||∞

)
= E (||H(s,qu)||∞) .

5.7 Convex Symmetric Sets

Attention now is turned to the case in [3]. When Φ( f )
is the probability of performance satisfaction, if the
set of parameters that satisfy the performance specifi-
cations is convex and symmetric, then the the uniform
distribution is the one that should be used in the distri-
butional robustness setting.

5.8 The Uniformity Principle

If Qgood is convex and symmetric, then it follows that

min
f∈F

Prob{q f ∈ Qgood} = Prob{qu ∈ Qgood}.

5.9 Example (Interval Polynomial)

The interval polynomial, analyzed in Section 3.4 from
a traditional Monte Carlo point of view is now stud-
ied using the Uniformity Principle. Indeed, recalling
p(s,q) = p0(s)+∑12

i=1 si−1qi with interval bounds qi ∈
[−r,r] for i = 1,2, . . . ,12, uncertainty radius r = 0.03
and stable nominal p0(s) = (s+1)12(s2 +0.002s+1),
in lieu of defining Qgood in terms of stability, we gener-
ate this set based on frequency domain considerations.
Namely, with target set P (ω) given in Figure 6, for ro-
bust stability, classical robustness theory, for example,
see [41], can be used to show that with a fixed q ∈ Q,
stability of p(s,q) is assured if p( jω,q) ∈ P (ω) for
the critical range of frequencies 0.98 ≤ ω ≤ 1.02.

Now, to obtain the desired distributionally robust
Monte Carlo estimate, we take

Qgood
.
= {q ∈ Q : p( jω,q) ∈ P (ω) for 0 ≤ ω < ∞}

and note that p0( jω) is the center of the frequency
dependent rectangles in Figure 6. Hence, Qgood is
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convex and symmetric and the Uniformity Principle
applies; that is

pΩ
.
= min

f∈F
Prob{q f ∈ Qgood} = Prob{qu ∈ Qgood}.

Now, an estimate p̂Ω of pΩ is obtained using a uni-
form sampling distribution over Q. For this example,
using N = 106 samples, it turns out that

p̂Ω ≈ 0.9969.

In conclusion, the inequality

p̂Ω ≤ min
f∈F

Prob{p(s,q f ) is stable},

guarantees a distributionally robust probability esti-
mate of stability of at least 0.9969.

5.10 Numerical Example (Robust Least Squares)

We now present an example which illustrates appli-
cation of the Uniformity Principle in a least squares
setting. Indeed, with

A(q) =




−1+q1 −2+q2 −4+q3

−5+q4 5+q5 −9+q6

−3+q7 −3+q8 −7+q9

−1+q10 −2+q11 −4+q12

−1+q13 4+q14 −1+q15




and

b(q) = b0 = [−7 −28 −14 −7 −7]T ,

we first compute the classical least squares solution
that minimizes ‖A(0)x−b(0)‖ to obtain

xLS = [1 −1 2]T .

Now, with uncertainty dimension ` = 15, we assume
that the distribution of the uncertain vector q belongs
to the class F and we analyze the performance of xLS

for different radii for the uncertainty. More precisely,
we assume that |qi| ≤ r and study the effects of varying
the radius r with xLS held fixed. First, it is noted that
classical robustness theory indicates that the maxi-
mum allowed radius is rmax ≈ 0.0112 with perfor-
mance specification

‖A(q)xLS −b(q)‖ ≤ 0.1

PSfrag replacements

0.01 0.02 0.03 0.04 0.05

−1

0

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

radius r

rmax

D
is

tr
ib

ut
io

na
lly

R
ob

us
tE

st
im

at
e

Fig. 7. Distributionally Robust Probability

is satisfied by all allowed values of q if and only
if r < rmax ≈ 0.0112. Now, we take the distributionally
robust point of view and seek to compute

Φ∗ = min
f∈F

Prob{‖A(q f )xLS −b(q f )‖ ≤ γ}

as a function of the uncertainty radius r. As a first step,
it is noted that it is readily shown that the set Qgood sat-
isfying the performance specifications is convex and
symmetric. The results obtained using the Uniformity
Principle are depicted in Figure 7. To illustrate how
conservative a classical robustness measure can be,
we take radius of uncertainty of r = 0.018, which
is approximately 60% larger then the rmax. For this
radius, the distributionally robust risk of performance
violation is only ε ≈ 0.0001.

6. NON-SYMMETRIC, NON-CONVEX CASES

When Qgood in not convex or symmetric, as seen
below, it is often possible to obtain sharp lower bounds
for distributional robustness.

6.1 Symmetrization

To motivate the so-called symmetrization approach,
consider the problem of Lyapunov stability with
a n×n state space matrix A(q) having entries depend-
ing affinely on the uncertainty vector q and fixed n×n
positive-definite Lyapunov matrix P. Now, consistent
with standard Lyapunov theory, for example, see [43],
we take

Qgood
.
= {q ∈ Q : AT (q)P+PA(q) < 0}.

To motivate the construction below, it is noted that the
set Qgood above is readily verified to be convex but is
not necessarily symmetric. For cases such as the one
above, it proves useful to consider the symmetrization
of Qgood given by

Qgood,s
.
= {q : q ∈ Qgood and −q ∈ Qgood}.

Now, since Qgood,s is both convex and symmetric, the
Uniformity Principle guarantees

min
f∈F

Prob{q f ∈ Qgood,s} = Prob{qu ∈ Qgood,s}.
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Furthermore, since the containment

Qgood,s ⊆ Qgood

holds, the performance estimate obtained using Qgood,s

is a lower bound for the true performance. Now, com-
bining these considerations with the applicability of
the Uniformity Principle for Qgood,s, we obtain

Prob{qu ∈ Qgood,s}= min
f∈F

Prob{q f ∈ Qgood,s}

≤ inf
f∈F

Prob{q f ∈ Qgood}.

In practice, it often turns out that this bound is quite
useful and the truncation problem is avoided.

Given that a lower bound on performance is being
computed above, the issue of the conservatism of the
estimate arises. In this regard, it can be easily seen,
using standard reasoning on probability of sets, that
for any f ∈ F ,

Prob{q f ∈ Qgood} ≥ Prob{q f ∈ Qgood,s}

≥ 2 Prob{q f ∈ Qgood}−1.

In other words, for high performance problems, the
bound obtained using symmetrization becomes tight.

6.2 Example

Figure 8 depicts a mechanical system consisting of
four blocks with uncertain dampers and springs. With
eight uncertain parameters with ranges 0.8 ≤ bi ≤ 2.2
and 0.8 ≤ ki ≤ 2.2 for i = 1, . . . ,4 and all unit
masses mi = 1, the performance objective is to keep
the gain of the system below a level g for all frequen-
cies. In other words, one wants to keep the transfer
function magnitude |H( jω)| from F to y below g at
all frequencies ω ≥ 0. Identifying q1,q2,q3 and q4

with deviations from the center points of the intervals
of spring constants and q5,q6,q7 and q8 with devia-
tions from the center points of the intervals of damper
constants, the theory of Linear Matrix Inequalities
(LMIs), for example, see [43], provides a sufficient
condition for this specification to be satisfied. Namely,
with state space triple (A0,B0,C0) obtained using the
data above, S being a solution to the nominal LMI,

M0
.
=




A0S +SAT
0 SCT

0 B0

C0S −gI 0
BT

0 0 −gI


 ,

1q

2q

Fig. 9. A Unirectangular Set

∆A(q) having the appropriate uncertainties corre-
sponding to the non-zero entries of A0 and ∆B(q) =
∆CT (q) = 0, performance is guaranteed if

M0 +∆M(q) < 0

where

∆M(q)
.
=




∆A(q)S +S∆AT (q) S∆CT (q) ∆B(q)
∆C(q)S 0 0
∆BT (q) 0 0


 .

Taking

Qgood
.
= {q : M0 +∆M(q) < 0}

and noting that this set is convex but not symmet-
ric, symmetrization was used to assess the probabil-
ity of performance satisfaction. A performance level
of g = 6.2076 was considered and 20,000 samples
were used to estimate performance. The value ob-
tained via a Monte Carlo simulation was

min
f∈F

Prob{q f ∈Qgood,s}= Prob{qu ∈Qgood,s}≈ 0.99.

Hence, in this case, we obtain an estimate of probabil-
ity of performance satisfaction which satisfies

0.99 ≤ inf
f∈F

Prob{q f ∈ Qgood} ≤ 0.995.

6.3 Unirectangularity

In this section, we describe the method in [26] which
applies to many cases when the set Qgood is non-
convex. Central to this method is the concept of a
unirectangular set which is described below.

As a first step, we define the notion of rectangular pro-
jection. That is, given a point q ∈ R`, its rectangular
projection R (q) is taken to be the box whose extremes
are the point q and the origin. Namely,

R (q)
.
= {(α1q1, . . . ,α`q`) : αi ∈ [0,1] for i = 1, . . . , `}.

Now, a set Qgood is said to be unirectangular if
the rectangular projection of any point q belonging
to Qgood is contained in Qgood ; i.e., if q ∈ Qgood

then R (q) ⊆ Qgood . An example of a unirectangular
set is shown in Figure 9. The result below, established
in [26], motivates some of the analysis to follow.



6.4 Unirectangularity Principle

If Qgood is unirectangular then,

min
f∈F

Prob{q f ∈ Qgood} = Prob{qu ∈ Qgood}.

6.5 Continuation of Unirectangularity

The fact that a Uniformity Principle is also valid
for unirectangular sets is the basis for the method
described in [26]. This method is applicable to all
problems for which there exists a deterministic algo-
rithm A which can test if a given rectangle is contained
in Qgood . More specifically, to obtain a lower bound on
the probability of performance satisfaction, for a given
uncertainty box Q, let

A(Q)
.
=

{
1 if q ∈ Qgood for all q ∈ Q;
0 otherwise.

For example, if A corresponds to an algorithm for
testing some inequality guaranteeing satisfaction of
the desired performance specifications, then A(Q) = 1
indicates that this inequality is satisfied for all q ∈ Q.
Another possibility is that the algorithm A corre-
sponds to the implementation of some robustness re-
sult such as Kharitonov’s Theorem or a structured
singular value criterion.

Next, we describe the method for estimating the prob-
ability of performance. In accordance with [26], if one
draws N samples q1,q2, . . . ,qN uniformly distributed
over Q, it can be shown that

inf
f∈F

Prob{q f ∈ Qgood} ≥
∑N

i=1 A(R (qk))

N
.
= p̂.

Hence, the estimate p̂ above is a lower bound on the
probability of performance satisfaction.

6.6 Example (Interval Polynomial)

For the second time, the interval polynomial of
Section 3.4 is revisited with the same uncertainty
bound ri = 0.03 for i = 1,2, . . . ,12. In this case,
the algorithm A corresponds to the application of
Kharitonov’s Theorem. That is, A [R (q)] = 1 if the
four Kharitonov polynomials associated with R (q)
are stable and zero otherwise. The algorithm above
was applied with N = 100,000 resulting in the esti-
mate p̂ ≈ 0.99936.

7. INTRODUCTION TO SPHERICAL SETTING

Thus far, this paper has concentrated on cases with the
so-called structured uncertainty entering the model.
This section considers cases where the uncertainty is
unstructured. In this regard, the method for analysis of
unstructured uncertainty of [28] is briefly introduced
with more detail provided in [1]. The first point to note

is that the description of F given in Section 3.2 is
unsuitable. That is, for the case of unstructured un-
certainty, it is unreasonable to assume that the uncer-
tain parameters vary independently. This observation
motivates a new definition for the set of probability
distributions F so as to accommodate parameter de-
pendency. Indeed, using the Euclidean norm for q and
taking Q

.
= {q : ‖q‖ ≤ r}, a probability density func-

tion f is said to belong to the class F if there exists a
nondecreasing function g(·) with scalar argument such
that f (x) = g(‖x‖) for all x. Intuitively, this says that
larger uncertainty values are less likely than smaller
values and that all “directions” are equally probable.

7.1 Truncations

Analogous to the development in Sections 1–6, in this
spherical setting, a class of radially truncated uniform
distributions is defined. Indeed, letting 0 ≤ t ≤ r de-
note a truncation radius, the truncated uniform distri-
bution ut is the uniform distribution over the truncated
sphere Qt

.
= {q : ‖q‖≤ t}. For example, if Q is the unit

sphere, then the uniform distribution over the sphere
of radius t = 1/3 would be a radial truncation.

In this radial distribution framework, an important ob-
servation is that there is only one truncation param-
eter no matter what the dimension of q. Therefore,
the problem of finding a optimal truncation t∗ ∈ T is
greatly simplified. That is, one need only conduct a
single variable line search in the variable t.

7.2 Truncation Principle

Analogous to the case of independent uncertainty, it is
shown in [28] that the Truncation Principle

inf
f∈F

Φ( f ) = inf
t∈T

Φ(ut)

also holds in the spherical uncertainty case.

7.3 Uniformity Principle

For the case of spherical uncertainty, it is shown
in [28] that a Uniformity Principle holds under weaker
hypothesis than in the independent parameter case.
That is, instead of requiring Qgood to be convex and
symmetric, we only require Qgood to be star-shaped;
i.e., if q ∈ Qgood then λq ∈ Qgood for all λ ∈ [0,1].

An example illustrating satisfaction of the star-shaped
requirement is obtained from the theory of quadratic
stability. Indeed, suppose that A0 is an n × n stable
matrix and P = PT > 0 is an n×n candidate Lyapunov
matrix satisfying AT

0 P+PA0 < 0. Now, suppose A0 is
replaced by A = A0 + ∆A(q) and we want to deter-
mine how large ||∆A(q)|| can be while preserving the
stability inequality above. Then, if ∆A(q) is a linear
function of q and Qgood

.
= {q ∈ Q : AT P + PA < 0},



it is easy to verify that the resulting set Qgood is star-
shaped. Hence, in view of the Uniformity Principle, a
uniform sampling scheme can be used in a distribu-
tionally robust Monte Carlo simulation.

8. CONCLUSION

Distributionally robust Monte Carlo simulation is a
research area which is still in its infancy. As seen in
this paper, many of the problems in the area reduce
to finding a so-called optimal truncation vector t∗ ∈ T
which defines the required interval for uniform sam-
pling. It was also seen that there are many special
cases for which this truncation-finding problem is
readily solved. For example, when Qgood is convex
and symmetric, the Uniformity Principle was seen to
apply; i.e., one simply takes all t∗i = ri corresponding
to a uniform distribution. A second special case was
seen to involve classes of componentwise convex or
concave functions for which distributional robustness
was obtained with an extreme distribution, uniform
or impulsive. Finally, a number of special cases were
described for which one obtains a distributionally ro-
bust lower bound for the probability of performance
satisfaction.

By way of future research, there are many open
problems involving some aspect of truncation-finding.
Most notably, when the performance specification
function φ(q) comes from a specific physical gener-
ating mechanism, analogous to the case of resistive
networks in Section 5.2, it is of interest to investigate
the extent to which exploitation of the structure of φ
may lead to a solution of the truncation problem. In
this regard, there are many control theoretic prob-
lems of interest. To illustrate, if H(s,q) is a transfer
function obtained from a signal flow graph with un-
certain branch gains qi, the manner in which these
gains enter H might be exploited to find the desired
truncations t∗i . This is simply one of many examples of
problems with a system theoretic flavor which would
be worthy of investigation in the distributional robust-
ness framework. Finally, it is felt that further research
involving the spherical setting of Section 7 would be
worthwhile. For problems lending themselves to this
setting, truncation-finding is not a serious problem
because only one truncation parameter is involved.

A second important line of future research involves
what might appropriately be termed distributionally
robust design. To this end, it should be noted the re-
sults described in this paper were entirely of an analy-
sis nature; i.e., there were no design variables entering
the performance specification φ(q). It would be of
interest to extend the results reported here to classes
of problems for which a design vector x enters φ.
For example, one considers a performance specifica-
tion φ(x,q) and the goal is to select x so as to provide
the best possible level of performance which is distri-
butionally robust with respect to f ∈ F . Some initial
results in this area are given in [4] and [39].
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