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Abstract: Certain topological and geometrical properties of data driven local coordinates
(DDLC) for state-space systems as introduced in (Woloddtial., 1997) and (McKelvey

and Helmersson, 1999) are derived. First the special case of SISO systems with McMillan
degreen = 1 is discussed in order to provide some insights into the geometry of the DDLC
construction. Then for the MIMO case with genenait is shown that the set of transfer
functions corresponding to the parameter space contains a nonvoid open subset of the
manifold of transfer functions of orderand that the estimation problem is locally well posed.
Moreover, it is stated that the parameter space always contains points corresponding to non
minimal systems and a result on the number of disconnected components of the equivalence
classes in the spadé‘2+”(m+s) (obtained by an embedding of the system matri@®8,C))
concludes this contribution.
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1. INTRODUCTION Herex(t) is then-dimensional state vector ayd) is
the s-dimensional observed output. In this pap€t)

In this paper certain topological and geometrical prop- js either an-dimensional deterministic input or equal
erties of a novel parametrization for classes of linear to g(t). In any case, the proceés(t)) is white noise.
systems are analyzed. One step towards an investigaa ¢ R™*", B € R™™ and C € R*" are parameter
tion of this type of parametrization called "data driven matrices. The stability condition is usually imposed,
local coordinates” (DDLC) was given in (Deistler and j e, Amax(A)| < 1 whereAmax denotes the eigenvalue
Ribarits, 2001) and this investigation will be extended of maximal modulus. The transfer function (fr(u(‘[)
here. DDLC has been introduced by (Wolodiét  toy(t)) is of the form
al., 1997) and (McKelvey and Helmersson, 1999) and
is claimed to be advantageous from a humerical point

of view. k@)=Y Kz =y CA'BZ =C#1-zA~'B (3)
The models considered are of the form = =
x(t + 1) = Ax(t) - Bu(t 1 wherez stands for the backward shift operator as well
(t+1) (t) +Bu(t) ) as for a complex variable. In case waft) = £(t), the
y(t) = Cx(t) +&(t) (2)  identity matrix has to be added to the right hand side
of (3).

1 Support by the Austrian 'Fonds zur Forderung der wis- LetUa be th_e set O,f all trafns,fe_r f“”Ct,'O”S (3) for arbi-
senschaftlichen Forschung’, Project P-14438 is gratefully acknowl- trary state d|men_5|0n- UA IS mﬁmte q‘men§|0nal and
edged. may be broken into finite dimensional bits. Usually



thesebits are describedby a subsetof an Euclidean
space(the setof free parameterslandthe casewhere
thesebits are subsetf the classof causalsystems
of fixed McMillan degreen, which is calledM(n) C
Ua = UnenugoyM(n), is considerechere. The subset
of M(n) correspondindo stabletransferfunctionsis
denotedby Ms(n). It is well-known that M(n) is a
realanalyticmanifold of dimensionn(m+ s); seee.g.
(HannanandDeistler 1988).Ms(n) is a submanifold
of M(n) of thesamedimension.

The setUp, is endaved with the so called pointwise
topologywhich correspondto therelativetopologyin
theproductspace(R>*™M)N for the coeficients(K;|j €
N). Note thatM(n), which denoteghe closureof the
setM(n), satisfiesM(n) = Ui<nM(i):

For givenm, s andn one canembedthe matrix triple
(A,B,C) in R™+(M+9)_ By 11 the mappingattaching
transfer functions to such matrix triples is denoted

(or, with slight akuse of notation, also the mapping
attachingtransferfunctionsto free parameters):

T RPN M(n)
(A,B,C) ~ Cz(l—zA~'B

Thepapertis organizedasfollows: In section2, DDLC

is briefly introduced.A list of resultsfor the special
cases= m=n=1is presentedn section3. Then
new resultsfor the caseof generaln and arbitrary
input and output dimensionsare given in section4.

Finally, in section5 a resultaboutnon minimal sys-
temscorrespondingo Tp is stated,and the equiva-

lenceclassegor minimal systemsreshovn to consist
of two disconnectedomponentsSection6 concludes
this contribution.

2. PARAMETRIZATION BY DDLC

The parametrizatiorby DDLC will be describedin
this section;for furtherdetailsseee.g.(McKelvey and
Helmersson1999).

Takingall entriesin (A, B,C) onecoulduseR"™ +N(ms)
asa parametespace For k(z) € M(n) the classeof
obsenational equivalencewithin R™ +1(M+3) are real
analytic manifoldsof dimensionn®. The ideanow is
to avoid the drawbackof n? essentially'unnecessary”
coordinatesby only parametrizingthe n(m+ s) di-
mensionalortho-complemento the tangentspaceto
a certainequivalenceclassin R +0(M+9) at a given
(A,B,C). Thesystem(A, B,C) is obtainedby aninitial
estimatethereforethe term"datadrivenlocal coordi-
nates”. Thenthe correspondingparametespaceis of
dimensiom(m+-s) ratherthann? + n(m+s) andthus
hasno"unnecessarytoordinates.

Theconstructiorof thetangentspaceo then? dimen-
sionalequivalenceclassatagivenminimal realization
(A,B,C) is obtainedby consideringa statetransfor

mationT = (In + A) with ||A]| < 1, where||.|| denotes

somematrix norm. Note that T~ = (I, — A+ A% —

L)

A=TAT1 = A+ 1,AA— AALL + O(||A2)
E=cTt=C—Cal,+0(A|]?)

UsingtherelationvedXYZ) = ZT ® XveY), where

X11Y ... XiqY
XeY=| : :
XplY e quY

with X € RP*9 andY € R"*S oneobtains

veqA) vedqA)
(vedl%) ) = ( veqB) ) + Quedd) + O(||4%]])

vedC) veqC)
AT@Ih—1h®A , ,
Q: BT®|n GR” +n(m4+s)xn (4)
—Ih®C

As the columnsof Q spanthe tangentspaceto the
equivalenceclassat (A, B,C), the orthogonalcomple-
mentis spannedy the columnsof someQ* (which
canbe obtainede.g.via a singularvalue decomposi-
tion of Q) andthe DDLC arethenobtainedasfollows:

vedA(Z)) vedA)
(veo(s(z)) ) - (veo(B)) +Q*¢
veqC(%)) veqC)

&€ Tp =R™ (5)

Let Vp denotethe set of all transfer functions of
the form T(A(E),B(§),C(%)) correspondindo Tp via
(5). Clearly, for given (A,B,C), Tp canbe identified
via (5) with an affine subspaceén R 1M+ \ith
slight aktuseof notationwe will useTp for both, the

parameterspaceR"™ ) and the affine subspacen
RPA+N(MS)

3. THESISOCASEWITHN =1

In this sectionsomeresultsfor the specialcasen =
s=m= 1 obtainedn (DeistlerandRibarits,2001)are
listed asthey provide usefulinsightsinto geometrical
andtopologicalpropertiesof the DDLC parametriza-
tion.

Note that for a given minimal realization (a,b,c)
correspondindo k(z) € M(1), the scalara is unique
and the correspondingequivalenceclassin R® is a
hyperbola(with 2 branchesywhich is determinecby
a fixed a and bc = cong; see the thick curve in
figure 1. Non minimal systemgcorrespondingdo the
trivial transferfunction k(z) = 0) arerepresentedby
the union of the planesgivenby b =0 andc = 0,
respectiely. Figurel alsoincludestwo othertypesof
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Fig. 1. Equivalenceclassesand parametrizedsubsets
in R3,

parametrizationsvhich arecommonlyusedfor linear
systemsnamelythe echelonand the Ober balanced
form. Both of themarecanonicaformsandareknown

to satisfycertaindesirableopologicalpropertiesThe

systemmatricesfor thesetwo parametrizationsare
givenasfollows:

» In figure 1 the setT(;) of all echelonparameters
correspondso the planegivenby ¢ = 1 exceptfor the
line givenby b=0,c= 1. Thisis becaus¢heechelon
systemsareparametrizedby

a(61,62) 6,
b(81,82) | = 62 |,(61,082) € T(l) =R xR~ {0}
c(81,62) 1

» Ober’s balancedcanonicalform only parametrizes
stablesystems,i.e. k(z) € Mg(n). The setsT(‘i) and
T2 4 of free Ober parametergorrespondo the two
open half plane sggmentsb = ¢,b > 0 for y = (1)
andb = —c,b > 0 for y = (—1), respectiely, with
a restrictedin both casesby —1 < a < 1. Note that
y is a structuralindex which determineghe pieceof
Ms(n) to beparametrizedndcanonly take thevalues
(1) and(—1) in the caseconsiderechere.If y= (1),
for instance,the discretetime systemmatricesare
explicitely givenby

20—h2

20+ b2

3(0,bc) \/icrbC
b(o,be) | =] 2 > | (0,be) € TG =R* xR*

c(o,be) 20+b¢

’ 2 V20D

20+ b2

Thefactthat|a| < 1is easilyseenandb = ¢ cantake
ary positive valuefor a suitablechoiceof o,b; > 0.

» In thecaseof DDLC, commencingrom aminimal
system(a, b, c), oneobtainsQ = (0,b, —c)" andthus
the columnsof Q* can be chosenas (1,0,0)T and
(0,c,b)T. Hence,Tp canbeidentifiedwith the whole
planegivenby (a,b,c)" + Q*&. Startingwith anOber
balancedinitial system(a,b,c) = (a,b,yb), e.g. for
y=1, Tp becomeshewholeplanegivenby b= c.

Fromfigure 1 the following geometricalandtopolag-
ical propertiesof DDLC canbeseen:

» NotethatVp ¢ M(1). Thisis animmediateconse-
guenceof the factthat Tp intersectghe planesgiven
by b = 0 andc = 0 yielding two straightlines.In case
of an Ober balancedinitial system,this intersection
becomegshea-axisonly.

» On the otherhand,Vp 2 M(1) becausehe plane
correspondingo Tp doesnotintersecir touchcertain
hyperbolaeseethethin curvein figure 1.

» Also note that T§"", which is the subsetof Tp
correspondingo all minimal systems,is openand
densdn Tp.

» The lack of global identifiability of T"" is easily
seenfrom figure 1: For balancedinitial realizations
all equivalenceclassesn TS consistof exactly two

elements,in ary other casethe equivalenceclasses
in TS"” consistof two elementsexceptfor the points
whereTp touches hyperbolavhich givesasingleton.

» NeverthelessTJ"" is locally identifiable(i.e. Ttngnn
is locally injective) at ary point exceptfor the points
whereTp touchesa hyperbola.

» Notethatin caseof anOberbalancednitial system
Tp containsall Oberbalancedsystemawith the same
y. As canbe shown easily this featureis no longer
valid for generah, sincein thiscaseheOberbalanced
systemscorrespondto a "curved” manifold of the
samedimension.

» Starting from an Ober balancedinitial system,
VN = m(TY") is openin M(1). On the otherhand,
for ary otherinitial system V" is not openin M(1)

becausethe transferfunctions correspondingo the
points where hyperbolaetouch TJ"" are boundary
pointsof V",

4. TOPOLOGICALRESULTS

It is clear from figure 1 that any hyperbolain the
neighborhooaf theinitial systemhasa uniqueinter-
sectionwith Tp andthuscanberepresentedniquely
by DDLC. More generally one obtainsthe following
localresult:

Theoeml. Assumehattheinitial system(A,B,C) is
minimal Thenfor a sufiiciently smallopenneighbor
hoodTi of 0 € Tp thecorrespondingy(Toc) =Moc iS
anorvoid opensubsebf M(n) andthe mappingrt .
is ahomeomorphism.

Remark:From Theoreml it is seenthatVp contains
a thick subsetof M(n) which containsTi(A,B,C).
Additionally, due to the homeomorphisndescribed
above, the estimationproblemis locally well posed
in the sensethat consisteng of the transferfunction
estimatesn Voc implies consisteng of the parameter
estimatesn Tjqc.

Remark:As will be showvn in the sequeltheresultof
Theoreml is valid for otherparametrizationaround



aminimal (A, B,C) fulfilling somegeneralconditions
which areeasyto verify.

Before Theoreml is proved, a resultfrom (Glover
andWillems, 1974)onlocalidentifiability atthe point
& =& is stated.Let T9 ¢ RY denotea parameter
spacewhich is an opensubseiof RY. Note that local
identifiability meansinjectivity of the function T[|T|%C
with T, . beingsomeopenneighborhooaf &g in T9.

Theoem2. Let @ : T9 — R +(MS) pe a continu-
ously differentiablemappingattachingthe vectoriza-
tion of the systemmatrices(A(g),B(§),C(§)) to & €
T9 andsupposéhat (A(&o),B(£0),C(&p)) is minimal.
Then

(1) TYislocally identifiableat& = &g if andonly if

F : GL(n) x T9 — R7*+n(mts)

veqTAE)T™ )
(T,E)H( veqTB()) ) (6)
veqC({)T™h)

is locally injective at (T, &) = (1,&o).
(2) If the rank of X(E) equalsr for all & € U(&p),

whereX(8) = [%(1,8); &, z)] andU (%) is
someopen nelghborhooobf o, thenTY is lo-
cally identifiableat the point § = &g if and only
if r =n?4d, or, equivalently, if and only if

det(XT (80)X (§0)) # 0.

PROOF. (1): "=" The factthatlocal identifiability
translateso localinjectivity of F is clear:In asuitably
choseropenneighborhood of &g all parametersyill

correspondo minimal systemgy is continuous)and
thereforeall equivalentsystemawill berelatedby the
given similarity transformation.Local identifiability
thereforémpliesthe existenceof anopensetT,3. C O
suchthat F|G,_(n)lezé;)C is injective. In particular this

alsomeansthatF | xT9 is injective whereOr from
oc

now on always denotessomeopenneighborhoocdf
theidentity matrix| € R™".

(1): "«<" Let us assumethat T9 were not locally
identifiableat & = &q. Taking&;,i = 1,2 with &1 # &2
in an arbitrarily small neighborhood‘l]%C C T9 of
&o with T(W(&1)) = (W(&2)), onecan easily calcu-
latethe uniquestatetransformation (§1,&2) € GL(n)
dependingcontinuouslyon &;,i = 1,2 and satisfying
T(&1,&2) — | for &1 — &2 suchthatF (T (§1,&2),81) =
F(1,&2). Thus, F restrictedto Oy x T, cannotbe
injective.

(2) Clearly, n? +d < n?+ n(m+s) hasto befquiIIed
Underthe assumptiorthat the rank of ( (T §) is
constanin someneighborhoodr x U (Eo) |t is clear
thatsuchanF is locally injective (i.e. F|s. xT9. isin-
jectivewith Or x T2 C Or x U (&o)) if andonlyif the
rank of this matrixis equalto n? 4 d. This is because
F canbelocally approximateddy the linear function
DF theinjectivity of which is directly determinecby

the JacobianHowever, notethatthe "only if” partis
dueto the constantrank assumptionwhich excludes
casedike f(x) =x3in anelghborhooabfx 0,forin-
stanceWhatremaingo shcwlsthatrk( TE) (T,8) =

( TE)(I &)) =rk(X(§))VT € GL(n). Thisis clear

becauseaT—E(T &) canbewrittenasG(T)X(§)H(T)

where G(T) and H(T) are regular matricesfor all
TeGL(n). O

Remark:Note that the theoremis alsoapplicablefor
parametrizationsesultingfrom somea priori system
knowledgeso thatd neednot be n(m+ s); however,
for T9 = Tp, X(&o) will itself be a squarematrix.
Moreover, it also dealswith parametrizationsvhere
the parametelspaceTg cannotbe identified with an
affine subspacen R+0(™9) - The Ober balanced
formfor n> 1 mayseneasan exampleatth|s point.

Remark:The ”constantandfull rank assumption’on

X(€) (and, equivalently, on a( )(T €)) hasa nice
generainterpretatiorin caseof d= n(m+s). Aslong
asit is valid, for ary fixed F(T,&), therewill be no
directionin thetangenspacedo theparametrizednan-
ifold (the structureof an affine subspacdike Tp is a
specialcase)thatlocally coincideswith arny direction
in thetangentspaceto the equivalenceclassesMore-
over, (T,&) cansene asalocal coodinatesystemin
RY*+N(M™S) aroundy(&o), i.e. F is alocal homeomor
phism:NotethatO = GL(n) x U (§p) is anopensubset
of R¥+N(MS) andE - O ¢ RNP+N(M+s) _y gn?-+n(m+-s)
is continuouslydifferentiablein O with non singular
JacobianBy theinversefunctiontheorenthisimplies
local invertibility of F aroundeach(T,§) € O, i.e.
bijectivity of F on open (in R™ M)y neighbor
hoodsO1(T,&) C O and Ox(F(T,&)) C RM*+n(m+s),
Thisdirectly yieldsthe global resultthatF is anopen
mapping (which will not be bijective on the whole
opensetO, in general)In all, continuityof F, together
with localinvertibility andglobalopennessurnF into
alocalhomeomorphism.

Remark: Theorem 2 also gives some information
aboutthe structureof the equivalenceclasseslf the
"constant rank assumption”in (2) in the theorem
above holds true and r < n? + d, then one cannot
havelocalidentifiability andthuscertainshape®f the
equivalenceclassexanbe excludeda priori.

Let RY T™™9) denotethe setof pointscorresponding
to minimalsystemsTheoreml is provedwith thehelp
of thenext theorem:

Theoem3. Let O be anyopensubselofRn n(m+s),
Thent(O) is openin M(n).

PROOF. Let us assumethat 1(O) is not openin
M(n). Thenonecanfind a transferfunction ky(z) €
m(O) and a sequencek(2) — ko(z) with k(z) €
M(n) ~ (O). Thus, the inverse image (k) —



. . . 2
(k) is an equialenceclassin R 7™ _ sat-

isfies: (k) N O = @. Let us now consideran ar

bitrary pointKo = (vedAg)T,vedBo)T,vedCo)")T €

1 1(ko) N O. Clearly onecanfind ane > 0 suchthat
the openball K¢ (Kp) with radiuse andcenterKq sat-
isfies Ke(Ko) C O. The condition above then means
thatinfy, ¢ 1) [|Ko — Kt > & whereK is givenanal-
ogously This is showvn to yield a contradiction:As

M(n) hasthe structureof arealanalyticmanifoldone
canchoosea coordinateneighborhoodJ, containing
the transferfunction kg togetherwith a homeomor
phism@, from Uy ontoanopensubsefl, of RNM™HS) ;

seechapter2.6 in (HannanandDeistler 1988).Con-
vergenceof ki — ko thereforeimplies corvergence
of the correspondingparametersn Ty andthuscon-
vergenceof the correspondingystemmatrices Next

one considersthe uniquetransformationTy € GL(n)

mappingthe systemmatricescorrespondindo @ (ko)

to the representatie Ko € 111 (ko) N O. This mapping
is alsocontinuouswhich finally implies corvergence
of the correspondingepresentatiesK; to Ko, clearly
yielding a contradictionto infy <1 [[Ko — K| >

. O

PROOF of Theorem 1 First, the rank conditionfor

X(€) of Theorem2 (2) is verified for §o = 0. The

first part g—ﬁ(l ,&) is independenbf the parametriza-
tion and hasalreadybeencomputedin (4). The sec-
ond part %—'E:(I,E) is particularly simple for DDLC

becausethe parametersenter the vectorization of

(A(%),B(£),C(€)) linearly via Q* (see(5)). Thus

AT @ ln— @A)
B(¢) @In Q- M
—Ih®C(§)

X(&) =

andfor § = o = 0 onegetsX(0) = [QEQL]. Moreover,
X(&) hasconstantrank n? + n(m+s) in a neighbor
hoodToc of & = 0 becaus& (&) dependgontinuously
on & andthe determinanis a continuousfunction of
the entriesin X(£). Note that 1y, = 100 F|gL(n)xTj.
attachingk(z) € M(n) to & € Tjoc C RN™9 —indepen-
dentof thechoiceof T € GL(n) —is:

e clearlycontinuous.

e an open mappingbecauseF is openby a re-
mark above and Tt is openby Theorem3. Thus
T(Tjoc) = Vioc is openin M(n).

¢ bijectivewhenconsideredsafunctionfrom Tjoc
to Vioc becausef theinjectivity of F|(g(n)xTy,)-

Hence,my,,. is ahomeomorphism. O

Consideringthe topological structureof the setsVp
andV{"" yieldsa"global” result:

Theoem4. Assumethattheinitial system(A,B,C) is
minimal. ThenT)"" is openanddensedn Tp andVj""
is openanddenséan Vp.

PROOF. Let us considerthe mappingA : Tp =+ R
attachingdet (WN(E)W'(E)) to & where

& (B(§),A(€)B(E),...,A(E)"B(E)) = Gr(§)
H Gi(&) Gr(§)T =WL(E) € R™"

andW}'(§) is obtainedanalogouslyNote thatW;' and
W. have full rankif andonly if (A(§),B(§),C(g)) is
minimal. Moreover, the determinaniof W'(§)W(Z)
is apolynomialin theparameter§;,i = 1,...n(m+s)
andthusanalytic(andthereforetrivially continuous).
Opennes®f T in Tp is straightforvard as TS =
A~Y(R\{0}) is theinverseimageof anopensetandA
is continuousDensenessf Tg‘i“ in Tp follows from a
well known resultfor analyticfunctions:A(g) = 0 can
only hold true on athin subsebf Tp (A cannotvanish
arywherein Tp). Opennessf V[')nin in Vp followsfrom
the definition of relative opennessHereVJ"" = Vip N
M(n) and M(n) is known to be openin M(n); see
(HannanandDeistler 1988).Densenessf V'™ in Vp
is showvn easily: Any kg € Vp can be approximated
arbitrarily closely by k € VI becausesvery point
&0 € (ko) UTp can be approximatedarbitrarily
closelyby parametewaluesin T)"" (TJ"" is densein
Tp) andTt (andthusTyTy) is continuous. O

Remark: Note that VI is not necessarilyopenin
M(n). This hasbeendiscussedh detailfor thespecial
casen=s= m= 1in section(3).

5. GEOMETRICALRESULTS

Accordingto the next theorem,for n > 0, TI"" is a
propersubsebf Tp. The proofis omittedfor reasons
of brevity, but canbe foundin (Ribaritsand Deistler
2001).

Theoemb5. Assumethat the initial system(A,B,C)
is minimal. Then Vp containstransferfunctions of
lower McMillan degree,i.e. Tp containsnonminimal
systems.

For the specialcasem = s = n = 1 the setof obser
vationally equivalent minimal systemshad the form
of hyperbolagwith two branches)The factthat the
equivalenceclassis notconnecteds valid in general:

Theoem6. Assumethatthe system(A,B,C) is min-
imal and s;m and n are arbitrary Then the set of
obsenationally equivalent systemsconstitutesa n?
dimensionalreal analytic manifold consistingof two
disconnectedomponents.

PROOF. The first statementis well known since
for fixed minimal (A,B,C) the mapping@ attaching
the vector (veq TAT-1)T veqTB)",veqCT—1)T)T
to T € GL(n) isahomeomorphisn(injectivity of gpon
GL(n) is dueto the uniguenessf the constructionof



statetransformations)For the secondpart, it suffices
to shav that the set GL(n) consistsof two discon-
nectedcomponentsseeLemma? belov. Thesetwo
componentsireopenin RY, theirimagesunderg are
openanddisjoint subsetof the equivalenceclass(@
is ahomeomorphismandthusthey aredisconnected.
However, bothcomponentareconnectedstheimage
of a connnectedset undera continuousmappingis
connected. O

In orderto make the papermore self-containedthe
following two lemmasareincluded:

Lemma7. ThesetGL(n) consistof two disconnected
componentgomprisingnonsingulamatriceshatcan
be continuouslytransformednto eithertheidentity I,
or diag(In—1,—1) within GL(n).

PROOF. Notethatbecaus¢hesetsdet=1((0,)) and
det~1((—,0)) aredisjointandopen,GL(n) consists
of atleasttwo disconnectedomponentsTo shaw that
thereare exactly two componentsconsiderthe SVD

of T € GL(n): T = U;3V]. HereX = diag(0y,. .. 0n)

with o1 > g2 > --- > 0, > 0 denotingthe singular
valuesandU1,V; € O(n) whereO(n) is theorthogonal
group.Thesingularvaluesareunique andassumehat
U; € O(n) is fixed. Hence,the correspondingv; €

O(n) will beuniquelydeterminedClearly, the matrix

3 canbe continuouslytransformedwithin GL(n) into

the identity I,,. It thereforeremainsto shav thatary

U € O(n) canbecontinuouslytransformednto either
In or diag(lh-1,—1) becauseone could then apply
such a continuoustransformationto the orthogonal
matrix U1V1T. Hence,useof Lemma8 completeshe
proof. O

Lemma8. ThesetO(n) consistf two disconnected
componentsomprisingorthogonalmatricesthat can
be continuouslytransformednto eithertheidentity I,
or diag(In—1,—1) within O(n).

PROOF. For n =1 this is trivial becauseO(1) =
{1,—1}. For n = 2 one canwrite U = (ujj),i,] €
{1,2}. AsUTU = I, one cansetu;; = cog@) and
up2 = sin(@) andgetsuy1 = U1 anduzz = Fu11 With
¢ € [0,2m). Hence,O(2) consistsof rotations(uz1 =
—U12, U2 = Uy1, i.e.det = 1) andproductsof arotation
andareflection(uzy = U1z, Upp = —Uj3, i.e.det = —1).
Now for an arbitrary matrix U = (Uij)i jef1,.n} €
R™" onecanalwaysfind acontinuouslyparametrized
matrix Ri2 = Ri2(@1), which performsarotationof the
angle@, in the planespannedy thefirst andsecond
coordinateaxis, suchthatup; = 0:

codq1) sin(qy)

—sin(g1) coggy) o
1 U= .. .
: 1 * ok L., ok

Ry2(01)

The angleq, is thengiven by tan_l(%) e [-3.7].
Note that Ri2(@1) € O(n) C GL(n). Next, one pre-
multiplies by Ri3(@) (which is definedaccordingly;
trigonometricentriesappeaitin the (1,1),(3,1),(1,3)
and(3, 3) positionsyandchoose#y, suchthatthe(3,1)
elementcancelsout. This will leave the secondrow
unchanged\Nriting Ri2(@1)R13(@2) . .. Rin(@h-1)U =
RiU =U € O(n) finally yieldsamatrixwith afirstcol-
umn of the form ({i11,0,...,0)". Notethat{iy; = +1
becausd] € O(n). If 11 = —1, one appliesa final
rotationRy2(TT) in orderto get(iy; = 1. Clearly, thefirst
row mustthenalsobe zeroeverywhereexceptfor the
(1, ~1) position.Next, Ry3(p1)Rea(p2) - - - Ren(pn—2)U =
RoU, andaftern— 1iterationsonegetsR,_; ... R:RiU
= diag(ln-1, Unn) With upp = £1 (becausehe product
is againan elementof O(n)), dependenbn whether
det(U)=1lordet(U)=-1. O

6. CONCLUSIONS

In this papersomegeometricabndtopologicalprop-
erties of datadriven local coordinates(DDLC) are
derived. It is shovn thatthe setof transferfunctions
describedoy DDLC hasthe sametopologicaldimen-
sion as the manifold M(n) and that the parameter
estimationproblemis locally well posed.Moreover,
it is statedthat the parameterspacealways contains
points correspondingo non minimal systemsand it
is proved that the equivalenceclassesn R +n(m+s)
alwaysconsistof two disconnecte@omponents.
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