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Abstract. In this paper new evolutionary method of solving multi-objecti ve optimization
problems is presented. This method utilizes an information about an individual sex for the
purpose of distinction between different groups of objectives. In particular, this information
is extracted from the fitness of individuals and applied during the parental crossovers in a
multi-objecti ve optimization process. Characteristics of this mechanism are discussed and
its performance in an exemplary multi-objecti ve PID control optimization task is presented.
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1. INTRODUCTION

In many practical decision processes it is necessary
to optimize several objective functions at the same
time (Goldberg, 1989; Michalewicz, 1996; Viennet,
et al., 1996; Man, et al., 1997). In order to integrate
those objectives into one, it is necessary to determine
the relations (weights) among the partial objectives.
On the other hand, with multi-objecti ve optimization
in mind, the notion of optimality is not obvious. To
solve the above optimality problems, various
methods can be applied, such as: weighted profits
(Michalewicz, 1996), distance function (Michale-
wicz, 1996), sequential inequalities (Zakian and Al-
naib, 1973), or ranking with reference to Pareto-
optimality (Michalewicz, 1996; Man, et al., 1997,
Kowalczuk, et al., 1999a; 1999b; Kowalczuk and
Biataszewski, 1999; 2000a; 2000b). An essence of
the first two methods lies in integration of many
objectives mto one. In the method of weighted
profits, all objectives are combined using a suitable
vector of weights. The method of distance consists in
calculation of a norm of the difference between the
objecti ve vector and a demand vector. The method of
sequential inequalities is based on transformation of

all the objectives into a set of inequality constraints
that can not be violated by the optimized parameters.
The above methods are simple and useful, but they
have the disadvantage of relaying on an arbtrary
choice of the weighting vector, demand vector or
limit values for the objective function. Moreover for
the purpose of integration of all the objectives into
one, it is necessary to determine the relations among
the objectives, what is not always possible. A
different approach is applied in the ranking method
using the notion of Pareto-optimality. This method
avoids any arbitrary weighting of objectives. Instead,
a useful classification of the solutions is proposed
that takes into account all the multiple objectives.
This concept of optimality does not give any
directions as to he choice of a single solution from
amongst various Pareto-optimal solutions. The
designer has therefore a chance to make an
independent judgement of the offers.

All the above mentioned methods of finding multi-
objective solutions can be applied in evolutionary
algorithms (Golberg, 1989; Michalewicz, 1996).
This paper presents a new method of solving multi-
objective optimization problems based on the



evolutionary search with the ranking method
referencing to Pareto-optimality. In our approach the
information about a degree of membership to a given
sex (Kowalczuk and Biataszewski, 2001) is attributed
to each solution obtained. This information is utilized
in the (crossover) process of mating, in which only
individuals of different sex (possible multiple) are
allowed to create their offspring’s.

1.1. Multi-objective optimization problem

Consider the following n-dimensional vector of an
objective function

=[x f£(x) ... fu@]er™ 1)

where

x =[x1 X, X, ]T e R" 2

denotes n-dimensional vector of searched parameters,
while f;(x),j=12,.,m, is a partial objective

function. Assuming that all the co-ordinates are profit
functions, the multi-objective optimization task can
be formulated as follows

max f(x) (3)

At this stage, the formula (3) describes a multi-profit
maximization task without constrains.

A solution (individual) in evolutionary algorithms
can have the following form

x; = [x,-1 x;, x;, ]T e R" @
in which the co-ordinate x;, (i=12,...,N,
k=1,2,...,n) embrace the k-th searched parameter

of the i-th individual, and N is the number of
individuals in the population

X=[x1 Xy ... xN] 5)
1.2. Pareto-optimality

The conditions of Pareto optimality (Goldberg, 1989)
for the maximization task (3) can be formulated as

follows. Let f(x,), f(x,)e R ™ where x, and

x, represent two individuals (possible solutions).

r

Vector f(x,) is partially smaller than vector f(x,)

if and only if for all their co-ordinates j=1,2,..., m

(Vj’f,-(x,,)S f,-(xr))/\(Ej!f,-(x,,)< f,-(xr)] Q)

Thus, in the Pareto sense, individual x, is

dominated, if there is an individual x, partially
‘better’ than x, in terms of definition (6). If an

individual is not dominated then it is called a Pareto-
optimal (P-optimal) one.

1.3. Pareto-optimality ranking method

The ranking method according to Pareto-optimality is
applied to assess the obtained individuals. In this
procedure a rank r(x;) of each individual x; is

determined by the following mapping (Man, et al.,
1997)

H(X) = Pmgx ~W(X)+1, Pmg= max p(x;) (8)

where up(x;) denotes the amount of all the
individuals by which the individual x; is dominated
in the Pareto sense, while p,, stands for the

maximum value among all p(x;), i=12,...,N.

2. RECOGNITION OF GENETIC SEX

In nature the sex division of a species appears to
differentiate  individuals with  reference to
reproductive function. According to this idea, our
concept of a genetic sex consists in dividing the
objective functions into several subsets, which have
attributed individual genetic sexes. This sex division
may result from  various distinguishable
characteristics of the considered objectives.

Therefore, one sex set can be constituted by
objectives of a ‘similar’ character, which are in a
kind of ‘internal’ rivalry (in terms of an
approximately equal meaning to the designer from
some point of view). Such an assortment can thus be
used to discharge the designer from a cumbersome
task of final isolation of a single solution from
amongst all the Pareto-optimal individuals obtained
in the course of multi-objective optimization.

On the other hand, different sex sets can express
various groups of ‘interests’ that are difficult to be
judged by the user in advance. In general, this
division can be employed to represent an ‘external’
rivalry, which is not simple to be resolved. At such
cases the best way can be to use the notion of Pareto-
optimality as the last resort.

In a consequent approach, we propose to apply the
mechanism of sex allotment during the whole
computational evolution for the purpose of creating
parental pools of different sex and generating new
offspring.



The vector of the profit functions (1) can therefore be
divided into s-subvectors

fX)=[fix) fr(x) f@]eR™ 9

where

fi(x) eR™, m=imi (10)
i=1

denotes the j-th subvector ( j=1,2,...,5) describing

the j-th genetic sex set of individuals. Within each of
these sets, Pareto-optimality-based ranking of
individuals is applied. In effect, each of the
individuals is assigned a vector of ranks

r(x) =[n(x) n(x) r(x) e R (11)

where 7;(x;) (j=L12,..,s) represents a degree of
membership of x; to the j-th set of genetic sex. The
sex assignment for an individual x; is performed as

follows
0, = max 10 (12)
1=1,2,...,s rlmax
where
= . 13
Py, = ax {1 (x))} (13)

Thus ¢@; is a degree of membership to the /-th sex
set, while 7, denotes a maximum rank within the

I-th sex set of individuals.

The population of each of the sex set is monitored in
terms of an assumed minimal number of individuals
(for instance, N /(3s)). Lacking positions can be

filled up with individuals from the lowest (waived)
Pareto front of another sex set.

It is assumed that only individuals of different sex
can create their offspring in the crossover process.
The procedure of selecting the parental pool is
carried out according to a stochastic-remainder
method (Kowalczuk, et al., 1999a) based on the
degree of membership to a given sex set.

3. SYNTHESIS OF PID CONTROLLER

As an example of the application of the proposed
approach to a multi-objective synthesis problem, a
PID controller is designed. Such controller can be
described in the frequency domain as

1
G.(s)=K,+—+sT 14
() =K, + kT, (14)

1

where K ,,T;, T, are the searched parameters. In our

example
x=[x1 Xy x3]TeiR3 (15)

denotes the searched vector of the PID parameters
(xy=K,, x, =T;, x3=T,). In the multi-objective

i’
optimization of the controller (14) for a given linear
plant, the following objective functions are
considered

IMSE = f;(x) = T[e’(x,t) +re(x,)fdt  (16)
0

ITSE = f,(x) = thez(x,t)dt 17)
0
ISC = f;(x) = Tuz(x,t)dt (18)
0
8m(x) = f4(x) = gain margin (19
Pm(X) = f5(x) = phase margin (20)

The integral objectives (16)-(18) can be computed by
solving suitable continuous Lyapunov equations.

The above criterion functions have been divided into
two sex sets represented by the following vector

f@=[fix) frx)] en’ 1)

The first sex set is composed of the three
performance objectives of integral type

[®=[i®) f(x) £ eR (22

while the second sex set embraces two robustness
measures: the gain margin and the phase margin

L@ =[fix) fs(x0)] e R? (23)

To find the P-optimal PID parameters the proposed
evolutionary procedure has been applied, assuming
that the i-th individual has the following form

X; =[x1i Xy, X3, ]T e R? (24)

In the evolutionary multi-optimization process two
kinds of the genetic sex of individuals (performance
and robustness) are iteratively assigned and applied
in generation of new populations of solutions.

3.1. An exemplary multi-objective optimization

Consider the following unstable non-minimum-phase
linear plant



(-0.55+1)(s+4)

G )= h 22 + 654 10)

The synthesis of the PID controller boils down to the
issue of multi-objective optimization of the vector
(15), represented by (24), with regard to the goal
expressed by the objective functions (16)-(20).

The following cube of the parameters of the PID
controller is to be searched

x=K,e[0,10], x, =T,€[0,3], x, =T, €[0,1]

The resulting evolutionary optimization algorithm
can be described as follows:

Program EA
Initiation of V individuals in population X;
while < 2,
Computation of fitness of each individual;
Pareto-optimality genetic-sex ranking of individuals;
Genetic-sex recognition of individuals;
Selection of individuals to each sex set;
Creation of new population X’ by:
- process of mating of different-sex individuals;
- mutation;
Replacing old population ( X « X’);
tet+1;
end

3.2. Results of evolutionary search

As the result of the evolutionary Pareto-optimal
search with genetic sex recognition a set of 21 P-
optimal individuals have been obtained. This set is
composed of two sex sets. In the first (performance)
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Fig. 1. P-optimal performance and robustness
individuals in terms of performance.

sex set, 9 individuals have been found, while in the
second (robustness) sex set, 12 individuals have been
selected. Figs. 1 and 2 depict the obtained P-optimal
performance and robustness individuals. Fig. 3 shows
a distribution of two selected integral objectives for
the P-optimal individuals belonging to the
performance sex set (‘triangles’) and to the
robustness sex set (‘circles’). Fig. 4 illustrates a
similar comparison of the obtained individuals in
terms of the two robustness measures.
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Fig. 2. P-optimal performance and robustness
individuals in terms of robustness.
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Fig. 4. P-optimal solutions against robustness
plane.

P-optimal solutions obtained both by global Pareto-
maximization (‘squares’) and by Pareto-optimization
with the performance-sex recognition (‘dots’) are
compared in Fig. 5 in terms of two chosen
performance objectives. The P-optimal individuals
gained by global Pareto-minimization (‘squares’) and
by the robustness-sex Pareto-optimization (‘dots’) are
also characterized in Fig. 6 in terms of robustness
measures. As can be seen from Figs. 5 and 6, the
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performance.
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Fig. 6. Two types of P-optimization in terms of
robustness.

presented approach with genetic-sex recognition is
generally more efficient and informative as compared
to the global Pareto-optimization method. The
achieved individuals with a definite sex property can
easily dominate (in the Pareto sense) over the
individuals obtained by means of a global Pareto-
optimization procedure.

3.3. Simulation results

Let us pick up four solutions of different kinds: (1)
x, =[2.4549 22021 0.6307]" (performance), (2)

x, =[2.0564 2.865 0.6992]" (robustness), (3)
x; =[3.6681 2.4691 0.5757|" (traditional), (4)

x, =[4.1484 2.9842 0.7460]" (Ziegler-Nichols);
with their corresponding values of the objectives:
f(x)=[2.83 2588 27.01 3.37 3839,

f(x)=[274 3714 2205 432 4325,
f(x3)=[2.93 12.94 3820 2.09 33.92]", and
f(x,)=[232 24.48 4837 1.68 27.80]".
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Fig. 7. Step responses of the closed-loop control
systems for the exact plant model.
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Fig. 8. Control signals for the exact-model plant.

The performance of these solutions has been verified
by simulation taking into account the exact-model
plant. Fig. 7 presents step responses of the closed-
loop control systems governed by the four controllers

defined by the vectors X;, i=1,...,4 and the feedback.

Evidently, the solution x; outperforms the other

ones (not only in terms of f{x), but also in the settling
time), while x, results in a most robust PID system.

Figs. 8 shows the corresponding control signals for
the PID systems in the case of the exact-model plant,
while Fig. 10 concerns a perturbed-plant case.
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Fig. 9. Step responses of the closed-loop control

systems for a perturbed plant.
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Fig. 10. Control signals for a perturbed plant.

For the perturbed case the parameters of the ‘exact’
plant have been changed (multiplicatively, with the
respect to the nominal values of the parameters) with
the use of uniformly-distributed deviations.

Fig. 9 introduces the results of simulation of the step
responses of the closed-loop control systems for the
perturbed plant. Clearly, the genetic sex-synthesized

controllers (X; and x,) have an evidently increased

insensitivity to the applied deviation from the
nominal plant as compared to the other controllers. It
is also important that in most cases the robustness-
sex solutions (Kowalczuk and Biataszewski, 2001)
conquer the performance-sex-intending controllers.

4. CONCLUSION

The proposed method of solving multi-objective
optimization problems is based on evolutionary
search with genetic sex recognition. Information
about a degree of membership to a given sex set is
extracted by a suitable Pareto-optimization ranking
processing of the fitness functions of the obtained
solutions. This information is utilized in the
(crossover) process of mating, in which only
individuals of different (possible multiple) sex are
allowed to create their offspring. An exemplary
application of the genetic-sex recognition in an
evolutionary procedure of Pareto-optimization of
parameters of PID controllers confirms its usefulness
and effectiveness in multi-objective optimization.

An instructive feature of the proposed optimization
approach is the way of application of the Pareto-
optimization method. Within the sex sets the Pareto-
optimization is used as a tool of ‘local’ judgement of
the ‘internal’ one-sex rivals for the purpose of their
uniform estimation and selection to a new parental
pool in each iteration cycle of EC (GA). What
means: (1) a new mechanism of pre-selection of
transient (and also final) individuals (solutions), and
(2) a mutual inter-sex support in the genetic search.

The standard concept of Pareto-optimality can still be
applied to the final set of solutions on a regular basis.
Another way of processing, which can be proposed,
is based on a notion of global optimality level
(Kowalczuk and Bialaszewski, 2000a) calculated
with respect to either the fitness functions or the
degrees of sex membership.

There are also two types of practical improvements
in the performance of GA gained by the proposed
approach as opposed to the traditional multi-
objective evolutionary algorithms: (1) the obtained
Pareto-fronts are more regular and P-optimal, and (2)
the user gains a clear settlement for his/her decision
upon the final-solution(s) selection.
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