Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

STABILIT Y ANALYSI S AND SYNTHESIS OF FUZZY SYSTEMS
USING INTERVAL ARITHMETIC

J. M. Bravo', O. Sanche, J. M. Andgjar*, E. F.Camaché

'Departament de Ingeniera Electrénica Sistemaslnformatisy AutomaticaUniversidal de Huelva Escuéa
Politécnia Superior Caretera HuelvaLaR4abida 21071-Palcs e la Frontera (Huelva) Spain
’Departamend de Ingeniera de Sistemay Automdica, Univ. de Sevilla Escueh Superiar de Ingenieros
Camiro de los Descubrimient®s/n 41092-Sevilla Spain
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1. INTRODUCTION

From the contrd engineerng poirt of view, the na-
jor effort in fuzzy knowledg basd contrd has keen
devoted to the developmen of particula applica-
tions rathe than to generh analyss ard desgn
methodologis for coping with the dynamic behaor
of contrd loops <see (Drimkov, et al., 1993
Andujar, et al., 2000) Sone auhors has ben usirg
conceps take from the qualitative thegr of nonlin-
ea dynamcd systens © interpreé the unstabity
unstablenss & equilibrium points and o give a
globd insight into the stalility problem se (Aracil
et al., 1989, Cook, 1994). Thee are aorithns in the
literature thd they allow the calculéion o the Jao-
bian matri if a systen of multivariable fuzz/ contrd
in closed dbop (Andlja 2001) A stratey to improwe
the desjn d fuzzy rule-basel controlles usng st-
bility indices basd on (Aradl, e al, 1989 was
proposel in (QOlero, & al., 1995 and devebpeal in
(Sanclez & al., 2000), bu the strategy basel on an
elective actuatdn onthe rules tha affed the stabity
indices requires expeit knowledge.

Lyapunov theory can be usel for stahility analyss d
TakagiSugero (TS) fuzzy systers thda can be e-
tended to a TS fuzzy systen with dfine term includ-
ing stabé adative fuzz contrd systens (Tanaka
1995; Johanson & al., 1998 Warg 197) using
quadraic Lyapunov fundion. The stalfdi zaion and
tracking problens usirg Lyapnov functions ha
been appied in different types d TS fuzzy contrd-
lers (bhansen1994).

The stablity analyss d a nonlinea systen ains &
as assurig an atracta aroundthe equili brium point
It can do adapting contiter parametersThis prd-
lem can be formulated like aparametié constraine
minimizaion problem The function to be minimizel
is the nonlinea closal loop euivalent function
Intervd analyss ha exhbited a degree d success n
the resolutio o this type d problem Intervd
mathematics is a generalizatio of red mathemécs
in which intervak rephee red numbers intervd
arithmettc replace red arithmetic and inteval
analyss replace red andysis (Moore 1966).



This paper deals with the application of interval
analysis to design a controller that assures the stabil-
ity in the presence of uncertainties of a first order
nonlinear system. The system has been modeled by a
TS fuzzy system using input-output data and an
identification method.

In the second section the mathematical background
of afuzzy model plant and a fuzzy controller is de-
scribed. The third section deals with the application
of intervd mathematics to find the equilibrium points
of afirst order system. The next section is devoted to
the extension of the application of interval arithmetic
to design a robust fuzzy controller. Finadly, the pro-
posed methods on sections Il and IV are illustrated
by an example.

2. THE NONLINEAR FUZZY MODEL

Consider a plant to be controlled, described by afirst
order dynamica system of the form

x= f(x,u) 1)

where XU isasigna of the plant that allowsto be
measured, and U] istheinput of the plant.

To control the plant it will connect to their entrance
(see Fig. 1) a controller represented by means of the
function u =g(x) .
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An equivaent single-input-single-output first order
non-linear dynamic fuzzy model to the process
shown in Fig. 1 can be represented by the following
group of rules:

PLANT
u
CONTROLLER

Fig. 1. Non-linear control system

RV:IF xisA and uisB THEN X ish'(x6')  (2)

wherel = 1...M isthe number of rules, x isthe state
variable, A' and B' are fuzzy sets defined on the uni-
verse of discourse of X state variable and u is the
control law. Finally, h' (x; 8") is a non-linear conse-
guent or a TS consequent with affine term:

h'(x;0")=a) +ax+b'u (3)

where the vector 0' 00" represents the group of
adaptive parameters.

The open loop model with input signal (2) is ob-
tained using a control signa u selected by consider-
ing the operating range of the system, that is, al
combinations of frequencies and amplitudes that

characterize the system dynamic behavior from these
data should be represented. The control signal is
applied on plant and input-output data, of the form
[xu,X], are collected. A gradient descendent train-
ing agorithm or another identification method is
using to obtain the fuzzy rules.

For afuzzy system with product inference engine, TS
fuzzifier, and center average defuzzifier, the rules (2)
respond to the following nonlinear equation:

ZV\fh' xG )
Zw‘

where W are the degree of firing of the rules.

(4)

If the consequent of the rule is as the type (3),
then:

Zw‘alx+2w‘b' o (5)

thisis
=a) +ax+b'u (6)

where &,, 8 and b' are variable coefficients com-

puted as:

Zw%’ qu;w wa o
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Note that the open loop model without controller can
be represented making u = 0 in (6), then:

x=a +ax (8)

In a similar way, the fuzzy controller of the process
(seeFig.1) can be represented by the following group
of rules:

IF xis C" THEN u" =¢} +cyx (9)

wherer = 1...N isthe number of rules, C" are fuzzy
sets defined on the universe of discourse of X, ¢ and

¢ are parameters of the mnsequent part.
Procedding like in (4) and (5), for a fuzzy system
with product inference engine, TS fuzzfier, and

center average defuzzfier, the rules (9) can be repre-
sented by:

- d +cix (10)

where the variable wefficients are given by:
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where " are the degree of firing of the rules of the
controller.

t

(1)

Substituting (10) in (6) and using (7) and (11), the
closed loop output can be represented by the follow-
ing non-linear function:
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3. INTERVAL MATHEMATICS AND THE OPEN
LOOP STABILITY PROBLEM

An intevad number X =[ab] is the sat

{x:a<x<b} of rea numbers between and includ-

ing the endpoints a and b. Interva arithmetic is an
arithmetic defined on sets of intervals, rather than
sets of real numbers.

Let be | the set of real compact intervals [a,b]
a,b00[J . Operationsin | satisfy the expression:

AopB={aopb:adAbOB for ABOI (13)

The equation (13) characterizes the four basic inter-
val operations (Moore, 1966):

[ab][c, d]=[a+c, b+d]
[a,b]-[c,d]=[a-d,b-c]
Omin (alc, ald, bOc, b0d), O

[a, b]c, OI]zémax (alc, amd, bOc, de)E “

[a, b]/[c. d] =[a, b]C[y/d, 1/c], if 0 O [c,d]

This is, the ranges of the four elementary interval
arithmetic operations are exactly the ranges of the
corresponding real operations. Extension of the in-
terval arithmetic to include O in division can be
found in (Hansen, 1992).

Bounds on the ranges of rea functions can be ob-
tained easily by interval arithmetic. A function
F:1(D) - | iscaled aninclusion function for f if
f()OF(X), OxOX 0Ol . Natura interva exten-

sion of red functions f(X), can be used to build inter-
val inclusion functions F(X).

The interval arithmetic can be applied to find the
equilibrium points of a dynamic system. Consider the
non-linear first order system of the form (8):

x=f(x), xOX,0l (15)

where X is the state variable defined in an interval Xo.
To find the equilibrium points of (15) requires solv-
ing the following equation:

f(x)=0, xOX,OI (16)
A basic branch and bound interval arithmetic algo-
rithm can be used to find deterministicaly al the
equilibrium points (see agorithm (1)) .The ago-
rithmic is based on (Kearfott, 1996).

S = EquilibriumPaints (f, Xo, &)

Insert XpinL
while (NoEmpty(L ))
X — first(L)
if 0 0 F(X) then rgect X
ese
if (max(JF(X))) <§&) theninsert XinS
ese
X1, X2 = bisec X
insert Xg, XoinL
endif
endif
endwhile
return S

end

Algorithm (1).- Interval Algorithm to find equilib-
rium points

Note that algorithm (1) has three arguments. the
system f, the initial interval search space X, and a
parameter & that indicates the precision of solutions.
The interval subspaces solution S is the output. The
lit S={X|OxOX, (f(x)|-0)<& and the list L

(that contains the interval subspaces to process in the
future) are used to carry out the search process.

The agorithm is based on getting first subspace X of
L. If the condition 0 O F(X) is reached, then the
interval subspace X does not contain an equilibrium
point, so it is rejected . If F(X) contains zero and
precision is not reached then, X is divided into two
subspaces (X1,X7) that are inserted in L . The adgo-
rithm ends when L is empty and returns S (a set of
intervals that contain equilibrium points).

The above algorithm can be improved using the In-
terval Newton method that provides quadratically
convergence.

4. INTERVAL ARITHMETIC AND THE CLOSED
LOOP STABILITY PROBLEM

The interval arithmetic can be applied to assure a
robust and stable closed loop non-linear system.



Consider the closed loop first order system of the
form (12):

x=f,(x0,), xOX,01, ,00" (17)

where 0_are the controller parameters. The purpose

is to design arobust regulator adapting the control ler
parameters of nonlinear equivalent closed loop sys-
tem defined on the state space.

To assure a stable closed loop, a positive definite
scalar function is defined: V(X) = x?. Its first order

derivate is V(x)=2xx=2xf,(x,0.). If V(X)<0
OxOX, 01 xz0 then V(x) is a Lyapunov func-

tion and the closed loop is a stable system. The rest
of section proposes search methods to find controller
parameters that assure a stable closed loopin X, .

1.1 Assuring one equilibrium point at origin.

Assuring one equilibrium point a origin and
stabilizing the closed loop system is a problem that
can be formulated like a constrained optimization
problem, that is:

Min s

0,,s

subject to:
-s< f,(0,0,)<s (18)
&fd(&'ec)<

with:

0<s<g i=l...m
x O0X,01; s&g00

X < Xl

where s is a dadck variable and & is a positive con-
stant. The optimization problem (18) can be resolved
using interval arithmetic methods or a more efficient
method like SQP locd search for a large number of
parameters.

1.2 Verifying the stability in all domain.

A solution d (18) does not guaranteethe stability of
closed loop system represented by (17). To werify
stability of closed loop system, agorithm 1 can be
used. If there is only one eguilibrium point in x = 0
the equivalent closed loop systemis gable.

1.3 Assuring the stability in all domain

The interval arithmetic can be used to find the pa-
rameters 0, where (17) is gable with just one para-
metric seach. In this case, (18) can be reformulated
dividing the domain X, of state variable into n inter-
vals X. The interval evaluation of F, in ead X, is
used to define interval congtraints that provides a
sufficient condition to guarantee stability in al Xo.
The new formulation is dowed in (19) where

X;Fy(X;,0,) is an interval evaluation of V(x) and
“sup” returns the maximum value of an interval, so
OxOX; Xy (x,0,)<sup(X;Fy(X;,0,)). Note that

the solution of (19) guarantees the stability in all the
state space Xo.

Min s
0,,s
subject to:

-s< f, ( ) s

sup(X;Fy (X;.0,)) <0 (19)

with:

0sss<g i=l..nm X Ol

Lnj o—{0}; se00

1.4 Assuring robust stability.

The condition to assure a stable system is
xfy(x0,)<0 O xOX, x#£0, but the mode
uncertainties and plant perturbations can convert a
stable system into an unstable system when f, (x)is
close to zero for x # 0. Interva constraints can be

added to find robust controllers. It is possible to as-
sure a feasible region for the closed loop system

where V(X) = xf, (x,8,) remains far from zero for x
# 0. The conditions |mx|g|f,(x0.)] and
|mx B 3 (60,)| OxOX, m,m, 00 0>m >m,
can be imposes using interval constraints. In this

case, (19) can be reformulated adding new interval
constraints (20). Fig. 2 shows this feasible region.

Min s
0.,s
subject to:
-s<f,(00,)<s
( i cl( i1 C) )
sup(ImX; |1 f, (X.0.)[) <0
sup(=|m,X; |+|f (X,.,0.)])<0 (20)
with:

0<s<g i=l...n; j=1.m;
X O1; X =X, -{0};

i=1
s,Em,m, 00, m <m <0

X

MX
MpX

Fig. 2. Feasible conic region of closed |oop system



Using the formulation presented in this section, sta-
ble fuzzy controller can be designed using the fol-
lowing steps:

Method I:

1.0btain the fuzzy model (2) from input-output data
2.Find a candidate controller using (18).

3.Verify the stability of closed loop fuzzy model by
algorithm (1).

Method II:

1.0btain the fuzzy model (2) from input-output data
2.Find a stable controller using (19), or a robust
controller using (20) .

5. EXAMPLES

Suppose a single input-output first order non-linear
dynamic TS fuzzy model constructed from the fol-
lowing rules:

IFxisA'anduisB' THEN X' =-3.1124-0.7231x + 1.4355u
IFxisA? anduisB? THEN x? =-5,0208—0.6083x —2.2965u
IFxisA’anduisB* THEN 3¢ = 1.9320+1.1651x+1.9223u
IFxisA'anduisB* THEN x* = 1.8074—0.1921x + 2.0752u
IFxisA°anduisB°* THEN X® = 3.7876—2.0436x +1.5483u
IFxis A anduisB® THEN % =-1.3423+0.0885x + 0.3792u
IFxisA” anduisB’ THEN X’ =0.3757 +0.9975x +0.0210u
IFxisA® anduisB® THEN X = 4.9533+2.3863x +1.1502u (21)
IFxisA’ anduisB’ THEN xX° =—5,1089+0.7818x —2.5545u
IFxisA anduisB® THEN x*° = —4.6787 — 7.8010x — 0.9931u
IFxis A" anduisB" THEN ™ =0.0866 —3.9195x +0.9690u
IFxisA? anduisB™ THEN X2 =1.5365 +2.0129x +0.7611u
IFxisA® anduisB® THEN X = -5,1570 +0.8969x —1.7535u
IFxisA*anduisB“ THEN x = —1.2878-1.5183x —1.5695u
IFxisA® anduisB™ THEN X*° = —4.7647 + 0.2327x — 2.3819u

The open loop fuzzy model (u = 0) has three equilib-
rium points as is showed in Fig.4: one ungtable and
two stables.

4

2

AN

X ungable

Fig. 4. The open loop fuzzy modd

Applying the algorithm (1) where the input f is the
fuzzy model (21), the state space is defined on
Xo=[—3,3] and a precision factor & = 0.000001
resultsin:

[2.236934, 2.236937]
[-4.768371e-006, 4.768371e-006]
[-0.372862, -0.372851]

The above results are the intervals that contain the
equilibrium points of (21), (see Fig.4).

The next step is to design a controller than can stabi-
lize the plant (21) around one equilibrium point at
origin (x = 0). There are two different methods that
were described in section IV.

Method I:

Applying the constrained optimization problem (18)
with Xo = [-2.5, 3], a distance of 0.1 between two
consecutive x and & = 0.00001 results in the follow-
ing controller parameters:

IFxis C' THEN u' = 0.12985770528635 — 0.00864347446107x

IFxis C? THEN u? = 0.73058213383531 - 0.71784375456007 X
IFxis C® THEN u® = -0.55777780417901 - 2.72825012841125x
IFxis C* THEN u* = -0.65189614404829 - 1.04548270823069x
IF xis C® THEN u® = —0.03141068256311 - 0.03907693556821x

The next step is to verify the global stability using
the algorithm (1). In this case, thereisjust one equi-
librium point. (Seefig 5).
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Fig. 5. Closed loop system applying (18) using a
distanceof 0.1

Method I1:

Applying the constrained optimization problem (19)
with Xo = [-3,3] and a width of 0.1 for intervals X
results in a controller that guarantees the system
stability in Xo, so algorithm (1) is not necessary. (See
Fig. 6)
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Fig. 6. Closed loop system applying (19) and using a
width of 0.1

A more robust cortroller can be found applying the
constrained optimizetion problem (20) with
X, =[-3,3], m=-3, m=-5 and a width of 0.05 for
intervals X;. Fig. 7 shows that f, remains between
lower and upper bounds.

1

Fig. 7. Closed loop system applying (21) and wsing
Xo=[-3,3], m=-3, m;=-5 and awidth of 0.05

6. CONCLUSIONS

In this paper, a design approach that can be
used to construct a stable fuzzy controller based on a
fuzzy plant model has been developing. The first
proposed method uses a parametric search to assure
one @uilibrium paint at origin and an interval ago-
rithm to verify that controller parameters conform a
stable in al domain closed loop nonlinea function
equivdent to the fuzzy plant model and fuzzy con-
troller. The seaond method uses the interval arithme-
tic to asaure the stability in al domain of closed loop
function on just one parametric seacch a gorithm.

The methods proposed here can be extended
to find the posshble presence of limit cycles on sec-
ond ader systems based on Pointcaé-Bendixon
theorem. The interval mathematics application to
high order systems will be described in a future pa-
per.

REFERENCES

Andljar J. M., Salmerén P., and Sanchez O.(2000).
Control Borroso Multivariable de una Planta de
Aguas Residuales. Proc. Seminario Anua de
Automética, Eledrénica e Instrumentacion, pp.
663-666. Barcdona (Spain).

Andljar J. M.(2001). Sistemas Borrosos Multivari-
ables. Modelizacién Neuro-Borrosa, Control y
Anadlisis de Estabilidad. Servicio de pulicado-
nes de la Universdad de Huelva Hueva
(Spain).

Aradl J., Ollero A., and GarciaCerezn A.(1989).
Stabili ty Indices of the Global Analysis of expert
Control Systems. |[EEE Transactions on Systems,
Man and Cybernetics, Val. 19, No. 5, pp. 998
1007.

Cook P.A.(1994). Nonlinear Dynamical Systems.
PrenticeHall. New Jersey (USA).

Driankov D., Helendoorn H., and Reinfrank M.
(1993). An Introduction to Fuzz Control.
Springer-Verlag. Gred Britain.

Hansen E. (1992). Globd Optimization Using Inter-
val Analysis. Marcd Dekker, Inc. New York
(USA).

Johansen T.. (1994). Fuzzy Modd Based Cortrol:
Stability, Robustness and Performance Isaues.

IEEE Trans. Fuzzy Systems, Vol. 2, pp. 221-
234,

Johanson M., Rantzer A., and Arzen K-E. (1998).
Piecavise Quadratic Stability for Affine Sugeno
Systems. In Proc. FuzzlEEFE 98, Anchorage.

Keafott. R.B. (199). Rigorous Global Search: Con-
tinuous Problems. Kluwer Academic Publishers.
The Netherlands.

Moore R.E. (1966). Interval Analysis. Prentice Hall.
New Jersey (USA).

Ollero A., Aradl J, and GarciaCerezn A.(199%).
Robust design of rule-based fuzzy controllers.
Fuzzy Setsand Systems, (70) pp.249-273.

Sanchez O., Ollero A., And(jar J. M., and Aradl
J.(2000) Application of Stability and Robustness
Indices in dynamics TS fuzzy systems. In Proc.
World Multiconference on Systemics, Cybernet-
ics and Informatics, pp. 250-255, Orlando
(USA).

Tanaka K. (19%) Stability and Stabilizability of
Fuzzy-Neural-Linear Control Systems. |EEE
Transactions on Fuzz Systems. Val. 3, No. 4,
pp. 438447,

Wang L. (1997). A Course in Fuzz Systems and
Control. Prentice Hall International. New Jersey
(USA).



