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Abstract: This paper deals with the design of stable and robust rule-based fuzzy control 
systems. The interval analysis is applied to design a stable fuzzy controller using a robust 
condition to assure the stability. An example with a fuzzy controller for a non-linear sys-
tem is presented to illustrate the design procedure. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
From the control engineering point of view, the ma-
jor effort in fuzzy knowledge based control has been 
devoted to the development of particular applica-
tions, rather than to general analysis and design 
methodologies for coping with the dynamic behavior 
of control loops, see (Driankov, et al., 1993; 
Andújar, et al., 2000). Some authors has been using 
concepts taken from the qualitative theory of nonlin-
ear dynamical systems to interpret the unstabilit y 
unstableness at equilibrium points, and to give a 
global insight into the stabilit y problem, see (Aracil, 
et al., 1989; Cook, 1994). There are algorithms in the 
literature that they allow the calculation of the Jaco-
bian matrix if a system of multivariable fuzzy control 
in closed loop (Andújar 2001). A strategy to improve 
the design of fuzzy rule-based controllers using sta-
bilit y indices based on (Aracil , et al., 1989) was 
proposed in (Ollero, et al., 1995) and developed in 
(Sánchez, et al., 2000), but the strategy based on an 
elective actuation on the rules that affect the stabilit y 
indices requires expert knowledge.  

Lyapunov theory can be used for stabilit y analysis of 
Takagi-Sugeno (TS) fuzzy systems that can be ex-
tended to a TS fuzzy system with affine term, includ-
ing stable adaptive fuzzy control systems (Tanaka, 
1995; Johanson, et al., 1998; Wang 1997) using 
quadratic Lyapunov function. The stabili zation and 
tracking problems using Lyapunov functions has 
been applied in different types of TS fuzzy control-
lers (Johansen, 1994).  
 
The stabilit y analysis of a non-linear system aims at 
as assuring an attractor around the equili brium point. 
It can do adapting controller parameters. This prob-
lem can be formulated like a parametric constrained 
minimization problem. The function to be minimized 
is the non-linear closed loop equivalent function.  
Interval analysis has exhibited a degree of success in 
the resolution of this type of problem. Interval 
mathematics is a generalization of real mathematics 
in which intervals replace real numbers, interval 
arithmetic replaces real arithmetic, and interval 
analysis replaces real analysis (Moore, 1966). 
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This paper deals with the application of interval 
analysis to design a controller that assures the stabil-
ity in the presence of uncertainties of a first order 
nonlinear system. The system has been modeled by a 
TS fuzzy system using input-output data and an 
identification method.  
 
In the second section the mathematical background                                                       
of a fuzzy model plant and a fuzzy controller is de-
scribed. The third section deals with the application 
of interval mathematics to find the equilibrium points 
of a first order system. The next section is devoted to 
the extension of the application of interval arithmetic 
to design a robust fuzzy controller. Finally, the pro-
posed methods on sections III and IV are illustrated 
by an example.    
 
 

2. THE NONLINEAR FUZZY MODEL 
 

Consider a plant to be controlled, described by a first 
order dynamical system of the form 
 

( )( , ) 1                           x f x u=�

 
where x ∈ℜ  is a signal of the plant that allows to be 
measured, and u ∈ℜ is the input of the plant. 
 
To control the plant it will connect to their entrance 
(see Fig. 1) a controller represented by means of the 
function ( )u g x= . 

 
Fig. 1. Non-linear control system   
 
An equivalent single-input-single-output first order 
non-linear dynamic fuzzy model to the process 
shown in Fig. 1 can be represented by the following 
group of rules: 
 

( ) ( ) ( ):            ;       2l l l l l lR IF x is A and u is B THEN x is h x θ�

 
 
where l = 1...M  is the number of rules, x is the state 
variable, Al and Bl are fuzzy sets defined on the uni-
verse of discourse of x state variable and u is the 
control law. Finally, hl (x; 

� l) is a non-linear conse-
quent or a TS consequent with affine term: 
 

( )0 1( ; )                                          3l l l l lh x a a x b u= + +
�

 
where the vector l n∈ ℜ

�
 represents the group of 

adaptive parameters. 
 
The open loop model with input signal (2) is ob-
tained using a control signal u selected by consider-
ing the operating range of the system, that is, all 
combinations of frequencies and amplitudes that 

characterize the system dynamic behavior from these 
data should be represented. The control signal is 
applied on plant and input-output data, of the form 
[ ], ,x u x� , are collected. A gradient descendent train-

ing algorithm or another identification method is 
using to obtain the fuzzy rules.  
For a fuzzy system with product inference engine, TS 
fuzzifier, and center average defuzzifier, the rules (2) 
respond to the following nonlinear equation: 
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where wl are the degree of firing of the rules. 
 
If the consequent of the rule is as the type (3), 
then:
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this is 
 

( )0 1                                                     6t t tx a a x b u= + +�

 

where 0
ta , 1

ta  and tb  are variable coefficients com-

puted as: 
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Note that the open loop model without controller can 
be represented making u = 0 in (6), then: 
 

( )1                                                               8t t
ox a a x= +�

 
In a similar way, the fuzzy controller of the process 
(see Fig.1) can be represented by the fol lowing group 
of rules: 
 

( )0 0                                   9r r r rIF x is C THEN u c c x= +
 

where r = 1…N  is the number of rules, Cr are fuzzy 
sets defined on the universe of discourse of x, 0

rc  and 

1
rc  are parameters of the consequent part. 

 
Proceeding li ke in (4) and (5), for a fuzzy system 
with product inference engine, TS fuzzifier, and 
center average defuzzifier, the rules (9) can be repre-
sented by: 

 

( )0 1                                                               10t tu c c x= +
 
where the variable coeff icients are given by: 
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where � r are the degree of firing of the rules of the 
controller. 
 
Substituting (10) in (6) and using (7) and (11), the 
closed loop output can be represented by the follow-
ing non-linear function: 
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3. INTERVAL MATHEMATICS AND THE OPEN 
LOOP STABILITY PROBLEM 

 
An interval number [ ],X a b=  is the set 

{ }:x a x b≤ ≤ of real numbers between and includ-

ing the endpoints a and b. Interval arithmetic is an 
arithmetic defined on sets of intervals, rather than 
sets of real numbers. 
 
Let be I the set of real compact intervals [a,b] 
a,b∈ ℜ . Operations in I satisfy the expression: 
 

{ } ( ): , , 13             Aop B a op b a A b B for A B I= ∈ ∈ ∈
  
The equation (13) characterizes the four basic inter-
val operations (Moore, 1966): 
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This is, the ranges of the four elementary interval 
arithmetic operations are exactly the ranges of the 
corresponding real operations. Extension of the in-
terval arithmetic to include 0 in division can be 
found in (Hansen, 1992). 
  
Bounds on the ranges of real functions can be ob-
tained easily by interval arithmetic.  A function 

: ( )F I D I→  is called an inclusion function for f if 

( ) ( ),f x F X∈  x X I∀ ∈ ∈ . Natural interval exten-
sion of real functions f(x), can be used to build inter-
val inclusion functions F(X). 

 

The interval arithmetic can be applied to find the 
equilibrium points of a dynamic system. Consider the 
non-linear first order system of the form (8): 
 

( )0( ),                                                15x f x x X I= ∈ ∈�
where x is the state variable defined in an interval X0. 
To find the equilibrium points of (15) requires solv-
ing the following equation: 
 

( )0( ) 0,                                                 16f x x X I= ∈ ∈
                

A basic branch and bound interval arithmetic algo-
rithm can be used to find deterministically all the 
equilibrium points (see algorithm (1)) .The algo-
rithmic is based on (Kearfott, 1996). 
 
S = EquilibriumPoints (f, X0, ξ) 

 
Insert X0 in L  
while (NoEmpty(L)) 
 X � ��� �	��
 �

L) 
 if 0 ∉ F(X) then reject X 
 else 
  if  (max(|F(X)|) < ξ)  then  insert X in S 

  else  
   X1, X2 = bisec X 
   insert X1, X2 in L 
  endif 
 endif   
endwhile 
return S 
end 
        
Algorithm (1).- Interval Algorithm to find equilib-

rium points 
 
Note that algorithm (1) has three arguments: the 
system f, the initial interval search space X0 and a 
parameter ξ that indicates the precision of solutions. 
The interval subspaces solution S is the output. The 
list { }| , (| ( )| 0) 
X x X f x= ∀ ∈ − <S and the list L 

(that contains the interval subspaces to process in the 
future) are used to carry out the search process. 
 
The algorithm is based on getting first subspace X of 
L. If the condition 0 ∉ F(X) is reached, then the 
interval subspace X does not contain an equilibrium 
point, so it is rejected . If F(X) contains zero and 
precision is not reached then, X is divided into two 
subspaces (X1,X2) that are inserted in L . The algo-
rithm ends when L is empty and returns S (a set of 
intervals that contain equilibrium points). 
 
The above algorithm can be improved using the In-
terval Newton method that provides quadratically 
convergence.  
 
 
4. INTERVAL ARITHMETIC AND THE CLOSED 

LOOP STABILITY PROBLEM 
 
The interval arithmetic can be applied to assure a 
robust and stable closed loop non-linear system. 



     

Consider the closed loop first order system of the 
form (12): 

 

( )0( , ),   ,                        17n
cl c cx f x x X I= ∈ ∈ ∈ℜ
� ��

 
where  c

�
are the controller parameters. The purpose 

is to design a robust regulator adapting the controller 
parameters of nonlinear equivalent closed loop sys-
tem defined on the state space.  
 
To assure a stable closed loop, a positive definite 
scalar function is defined: 2( )V x x= . Its first order 

derivate is ( ) 2 2 ( , )cl cV x xx xf x= =
�� �

. If ( ) 0V x <
�

 

0 0x X I x∀ ∈ ∈ ≠  then ( )V x  is a Lyapunov func-
tion and the closed loop is a stable system. The rest 
of section proposes search methods to find controller 
parameters that assure a stable closed loop in 0X . 
  
1.1 Assuring one equilibrium point at origin.   
 
 Assuring one equilibrium point at origin and 
stabilizing the closed loop system is a problem that 
can be formulated like a constrained optimization 
problem, that is:   
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where s is a slack variable and ξ is a positive con-
stant. The optimization problem (18) can be resolved 
using interval arithmetic methods or a more eff icient 
method li ke SQP local search for a large number of 
parameters.  
 
1.2 Verifying the stability in all domain. 

 
A solution of (18) does not guarantee the stabil i ty of 
closed loop system represented by (17). To verify 
stabil ity of closed loop system, algorithm 1 can be 
used. If there is only one equil ibrium point in x = 0 
the equivalent closed loop system is stable.  

 
  

1.3 Assuring the stability in all domain 
 
The interval arithmetic can be used to find the pa-
rameters c



 where (17) is stable with just one para-

metric search. In this case, (18) can be reformulated 
dividing the domain X0 of state variable into n inter-
vals Xi. The interval evaluation of clF  in each Xi, is 
used to define interval constraints that provides a 
suff icient condition to guarantee stabil ity in all X0. 
The new formulation is showed in (19) where 

( , )i cl i cX F X



 is an interval evaluation of ( )V x
�

 and 
“sup” returns the maximum value of an interval, so 

ix X∀ ∈  ( )( , ) sup ( , )cl c i cl i cxf x X F X≤

 


. Note that 

the solution of (19) guarantees the stabil ity in all the 
state space X0.  
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1.4 Assuring robust stability. 
 
The condition to assure a stable system is 

0( , ) 0 0cl cxf x x X x< ∀ ∈ ≠
�

, but the model 
uncertainties and plant perturbations can convert a 
stable system into an unstable system when ( )clf x is 

close to zero for x ≠ 0. Interval constraints can be 
added to find robust controllers. It is possible to as-
sure a feasible region for the closed loop system 
where ( ) ( , )cl cV x xf x=

��
 remains far from zero for x 

≠ 0. The conditions 1| | | ( , ) |cl cm x f x≤ �  and 

2| | | ( , ) |cl cm x f x≥ �  0x X∀ ∈  1 2 1 2, 0m m m m∈ ℜ > >  

can be imposes using interval constraints. In this 
case, (19) can be reformulated adding new interval 
constraints (20). Fig. 2 shows this feasible region. 
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Fig. 2. Feasible conic region of closed loop system 
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Using the formulation presented in this section, sta-
ble fuzzy controller can be designed using the fol-
lowing steps: 
 
Method I: 
1.Obtain the fuzzy model (2) from input-output data 
2.Find a candidate controller using (18). 
3.Verify the stability of closed loop fuzzy model by 
algorithm (1). 
 
Method II: 
1.Obtain the fuzzy model (2) from input-output data 
2.Find a stable controller using (19), or a robust 
controller using (20) . 

 

5. EXAMPLES 

 
Suppose a single input-output first order non-linear 
dynamic TS fuzzy model constructed from the fol-
lowing rules: 
 

1 1 1

2 2 2

3 3 3

4 4 4

5

IF is and is THEN 3.1124 0.7231  + 1.4355

IF is and is THEN 5.0208 0.6083 2.2965

IF is and is THEN 1.9320 1.1651 1.9223

IF is and is THEN 1.8074 0.1921  + 2.0752

IF is and

x A u B x x u

x A u B x x u

x A u B x x u

x A u B x x u

x A

=− −
=− − −
= + +
= −

�

�

�

�

5 5is THEN 3.7876 2.0436 1.5483u B x x u= − +�

6 6 6IF is and is THEN 1.3423+0.0885 0.3792x A u B x x u= − +�

7 7 7IF is and is THEN 0.3757 0.9975 0.0210x A u B x x u= + +�

8 8 8IF is and is THEN 4.9533 2.3863 1.1502  (21)x A u B x x u= + +�

9 9 9IF is and is THEN 5.1089 0.7818 2.5545x A u B x x u=− + −�

10 10 10IF is and is THEN 4.6787 7.8010 0.9931x A u B x x u= − − −�

11 11 11IF is and is THEN 0.0866 3.9195 0.9690x A u B x x u= − +�

12 12 12IF is and is THEN 1.5365 2.0129 0.7611x A u B x x u= + +�

13 13 13IF is and is THEN 5.1570 0.8969 1.7535x A u B x x u= − + −
�

14 14 14IF is and is THEN 1.2878 1.5183 1.5695x A u B x x u= − − −�

15 15 15IF is and is THEN 4.7647 0.2327 2.3819x A u B x x u= − + −�  

 
The open loop fuzzy model (u = 0) has three equilib-
rium points as is showed in Fig.4: one unstable and 
two stables.  

Fig. 4. The open loop fuzzy model 

Applying the algorithm (1) where the input f is the 
fuzzy model (21), the state space is defined on 

0 =[ 3, 3]X −  and a precision factor ξ = 0.000001 
results in:   
 
[2.236934, 2.236937] 
[-4.768371e-006, 4.768371e-006] 
[-0.372862, -0.372851] 
  
The above results are the intervals that contain the 
equilibrium points of (21), (see Fig.4).  

 
The next step is to design a controller than can stabi-
lize the plant (21) around one equilibrium point at 
origin (x = 0). There are two different methods that 
were described in section IV. 
 
Method I: 
 
Applying the constrained optimization problem (18) 
with X0 = [-2.5, 3], a distance of 0.1 between two 
consecutive xi and ξ = 0.00001 results in the follow-
ing controller parameters: 
 

1 1

2 2

3 3

4 4

IF is THEN  0.12985770528635 0.00864347446107

IF is THEN  0.73058213383531 0.71784375456007

IF is THEN 0.55777780417901 2.72825012841125

IF is THEN 0.65189614404829 1.04548270823

x C u x

x C u x

x C u x

x C u

= −
= −
= − −
= − −

5 5

069

IF is THEN 0.03141068256311 0.03907693556821

x

x C u x= − −

 

 
The next step is to verify the global stability using 
the algorithm (1).  In this case, there is just one equi-
librium point. (See fig 5). 
 

Fig. 5. Closed loop system applying (18) using a 
distance of 0.1 

 
Method II: 
 
Applying the constrained optimization problem (19) 
with X0 = [-3,3] and a width of 0.1 for intervals Xi  
results in a controller that guarantees the system 
stability in X0, so algorithm (1) is not necessary. (See 
Fig. 6)  
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Fig. 6. Closed loop system applying (19) and using a 
width of 0.1  

 
A more robust controller can be found applying the 
constrained optimization problem (20) with 

[ ]0 3,3X = − , m1=-3, m2=-5 and a width of 0.05 for 

intervals Xi.. Fig. 7 shows that clf  remains between 
lower and upper bounds.  
 

 
Fig. 7. Closed loop system applying (21) and using 

X0 = [-3,3], m1=-3, m2=-5  and a width of 0.05 
 

6. CONCLUSIONS 
 

In this paper, a design approach that can be 
used to construct a stable fuzzy control ler based on a 
fuzzy plant model has been developing. The first 
proposed method uses a parametric search to assure 
one equil ibrium point at origin and an interval algo-
rithm to verify that controller parameters conform a 
stable in all domain closed loop nonlinear function 
equivalent to the fuzzy plant model and fuzzy con-
trol ler. The second method uses the interval arithme-
tic to assure the stabilit y in all domain of closed loop 
function on just one parametric search algorithm.  

The methods proposed here can be extended 
to find the possible presence of l imit cycles on sec-
ond order systems based on Pointcaré-Bendixon 
theorem. The interval mathematics application to 
high order systems wil l be described in a future pa-
per. 
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