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Abstract: Recent years has seen much progress in the theory and application
of iterative learning control schemes for both linear and (classes of) nonlinear
dynamics. In the case of the former, many algorithms based on minimizing a
suitable cost function have been reported. Here the interest is in the so-called norm
optimal approach where the basic philosophy is to compute the control input on
the current trial such that the tracking error is reduced in an optimal way without
too much deviation from the control input used on the previous trial. This paper
compares the performance of a range of controllers arising from use of the norm
optimal approach - both stand alone and against alternatives.
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1. INTRODUCTION

TIterative learning control (ILC) is a technique to
control systems operating in a repetitive mode
with the additional requirement that a specified
output trajectory r(t) defined over a finite interval
[0,T] is followed to high precision. There are
numerous examples of such systems including
robot manipulators that are required to repeat
a given task to high precision, chemical batch
processes or, more generally, the class of tracking
systems.

Motivated by human learning, the basic of idea
of ILC is to use information from previous exe-
cutions of the task in order to improve perfor-
mance from trial to trial in the sense that the
tracking error is sequentially reduced ((Arimoto et
al., 1984; Moore, 1993)). Typical ILC algorithms
construct the input to the plant on a given trial
from the input used on the previous trial plus

an additive increment that is typically a function
of past values of the observed output error, i.e.
the difference between achieved and desired plant
output. The objective of constructing a sequence
of input functions {uy(t)}x, t € [0,7T], such that
the performance as the task is repeated is grad-
ually improving, can be refined to a convergence
condition on the input and error:

lim |lex|| =0, lm [Jux —ucl| =0 (1)
k— o0 k— o0

where ey (t) is the error on trial k, i.e. difference
between r(t) and the system output, y(¢), and
ug(t) is the input to the system on this trial.

The above definition of convergent learning is a
stability problem on an infinite-dimensional two-
dimensional (2D)-product space. As such it places
the analysis of ILC schemes firmly outside the
scope of traditional control theory. In particular,
ILC must be studied in the context of fixed-



point problems or, more precisely, linear repetitive
processes ((Rogers and Owens, 1992)).

Since the ILC concept was proposed, a very large
number of approaches have been proposed but
here we consider the very important case when the
ILC scheme for linear plant dynamics is designed
based on optimal control techniques. One option
here is to use a quadratic cost function where the
only control input term in this cost function is
that to be used on the current trial. Recent years
have also seen the emergence of so-called norm
optimal ILC which can be realized in terms of
current trial mechanisms combined with feedfor-
ward of previous trial data. Here the control input
term in the cost function is based on the difference
between the input signals used on successive trials.

The algorithms which emerge from the norm op-
timal approach are based on splitting the two-
dimensional dynamics into two separate one-
dimensional problems. This is done by introducing
a performance criterion as the basis of specifying
the control input to be used on each trial. In this
context, the problem can be interpreted as the
determination of the control input on trial k& + 1
that reduces the tracking error in an optimal way
but which does not deviate too much from the
control input used on trial k. Use of this approach
leads to a number of key properties, of which the
most important are as follows.

1. Automatic choice of step size (in the iterative
procedures needed to solve the optimization prob-
lem).

2. Potential for improved robustness through the
use of causal feedback of current trial data and
feedforward trial data from previous trials.

Tt is also possible to enhance norm optimal control
to include predictive action (Amann et al., 1998),
i.e. future predicted error signals are explicitly
included in the cost function. In this paper, we use
a computer aided analysis tool constructed for op-
timal control linear model based ILC schemes to
undertake a detailed comparative study of norm
optimal (including predictive action) ILC con-
trollers for linear plants against those designed us-
ing alternative optimal control based approaches.
The scope of this study includes the experimen-
tal setup reported in (Frueh and Pham, 2000)
(thereby giving the option for future experimental
verification). We being in the next section by sum-
marizing the necessary background results (for
complete details see (Amann et al., 1996b; Amann
et al., 1998) and the relevant references).

2. BACKGROUND

In this paper we restrict attention to the norm
optimal approach in a Hilbert space setting. The

‘translation of this setting to the special case
of a linear time invariant system is straightfor-
ward and will form a starting point for the work
reported here. The alternative ‘conventional’ al-
gorithm for these systems (i.e. a quadratic cost
function where the contribution from the control
input term is only (explicitly) based on the current
trial values) is not detailed here and can be found
in, for example, (Frueh and Pham, 2000) and the
relevant cited references.

The following is the formal definition of a success-
ful ILC algorithm.

Definition 1. Consider a dynamic system with in-
put u and output y. Let ) and U be the output
and input function spaces respectively and let r €
Y be a desired reference trajectory from the sys-
tem. Then an ILC algorithm is successful if, and
only if, it constructs a sequence of control inputs
{uk(t)}r>0 which, when applied to the system or
plant (under identical experimental conditions),
produces an output sequence {yx(t)}r>0 with the
following properties of convergent learning

lim y, =7, lim up = ug (2)
k—o0 k—o0

Here convergence is interpreted in terms of the
topologies assumed in ) and U respectively.

Note: This general description includes linear and
nonlinear dynamics, continuous or discrete plants,
and time-invariant or time-varying systems.

Now let the space of output signals ) be a
real Hilbert space and U also be a real (and
possibly distinct) Hilbert space of input functions.
The respective inner products (denoted by (-, -))
and norms || - |[|2 = (,,-) are indexed in a way
that reflects the space if it is appropriate to the

discussion.

The dynamics of the plant considered here are
approximated by a linear model which in operator
form can be written as

y=Gu+ 2z 3)

where no loss of generality arises from setting
2o = 0. Also it is clear that the ILC procedure, if
convergent, solves the problem r = Guy for us
and, if G is invertible, the formal solution is just
Uso = G~ 1r. A basic premise of the ILC approach
is that the direct inversion of G is regarded as
an impractical solution because it requires exact
knowledge of G' and involves derivatives of r. This
high-frequency gain characteristic would make
such an approach sensitive to noise and other
disturbances. Also it can be argued that inversion
of the whole plant G is unnecessary as the solution
only requires finding the pre-image of r under G.



The above problem is easily seen to be equivalent
to finding the minimizing input u, for the opti-
mization problem

min.{|le||* : e=r—y,y=Gu} (4

The optimal error |[r — Guy||?> is a measure
of how well the ILC algorithm has solved the
inversion problem. It also represents the best that
the system can do in tracking the signal r. The
case of interest here is when the optimal error is
Z€ero, i.e. U is a solution of r = Gue. Also (4) is
clearly a singular optimal control problem which
by its very nature requires an iterative solution.

There are an infinity of potential iterative pro-
cedures for solving (4) and of these the gradient
approach has the simplest form and has been
extensively investigated in the ILC literature. A
gradient based ILC algorithm has the form

Upt1 = Ug + €x+1G ep, (5)

where G* : ) — U is the adjoint operator to G,
and €41 is a step length to be chosen at each
iteration. This general approach suffers from the
need to choose this step length on each trial and
the feedforward structure of the iteration takes
no account of current trial effects - including
disturbances and plant modeling errors.

Norm optimal ILC has the following two crucial
properties relative to alternative gradient based
algorithms

1. Automatic choice of step size.

2. Potential for improved robustness through the
use of causal feedback of current trial data and
feedforward of data from previous trials.

In particular, the ILC algorithms considered here
compute the input on trial £ 4+ 1 as the solution
of the minimum norm optimization problem

U1 = arg miny, , {Je+1(ue+1)}  (6)

subject to

€kt1 =T — Yk+1s Yol = Gupy1 (7)

where the performance index (or optimality crite-
rion) used is

Jrt1 (urr1) = [lexsally + lunsr — uellz (8)

The initial control ug € U can be arbitrary but,
in practice, will be a good first guess at the
solution of the problem. The relative weighting of
reducing the current trial error against minimizing
the deviation in the control input signals used
on successive passes can be absorbed into the
definitions of the norms in ) and Y.

The benefits of this approach are immediate from
the simple interlacing result

llex+1]]® < T (urt1) < |lex][?, VE >0 (9)

which follows from optimality and the fact that
the (non-optimal) choice of ujy1 = uy would lead
to the relation Jgi1(ug) = |lex|[>. This result
states that the algorithm is a descent algorithm as
the norm of the error is monotonically decreasing
in k. Also equality holds if, and only if, ug11 = ug,
i.e. when the algorithm has converged and no
more input-updating takes place.

The controller on trial k + 1 is given by

Upy1 = uk + Grepy1, Vo >0 (10)

This relationship, together with the error update
relation

err1 = (I +GG*)tep, VE>0  (11)

and the recursive input update relation

upe1 = (I + G*G) Hug + G*r), VE > 0(12)

can be used to undertake a detailed analysis of
the properties of this class of ILC laws (Amann et
al., 1996b).

Predictive optimal ILC (Amann et al., 1998) ex-
tends the cost function to the form

N
Ter1,n (urgn) = D A (llersl3
i=1

+ ||ukri — vrricallz)  (13)

This criterion includes the error of the next N
trials as well as the corresponding changes in the
control input signals The weighting parameter
A > 0 determines the importance of more distant
(future) errors and incremental inputs compared
with the current ones. By including more future
signals into the performance criterion, the algo-
rithm becomes less ‘short sighted’. The theory
given above extends in a natural manner to this
case and an obvious question to ask is: when does
the extra (computational) cost become worth-
while?

3. ANALYSIS

The implementation of norm optimal and pre-
dictive norm optimal ILC schemes is a relatively
straightforward exercise and is hence not detailed
here. Instead, we proceed to use MATLAB based
implementations to discuss and compare the per-
formance of these approaches both stand alone
and relative to alternative optimal control based
algorithms. The plants used have the following
transfer functions



s+1

G = ar s re -
s—1
Gl = a5 1o

Also we use a minimal state space realization of
these processes with state space triple {4, B, C},
and, in the general case, assume that there are [
inputs and m outputs.

In this paper, we will only consider the use of
linear quadratic optimal control cost functions in
the ILC setting. In particular, we will compare
the optimal control based ILC of (Frueh and
Pham, 2000) (and others) against norm optimal
and predictive norm optimal control. The choice
of input and output spaces is as follows

u€eU = I5[0,T]
(r,r(T)) €Y = LJ[0,T] x R™ (16)

Also the inner products in ) and U are defined as

T

(lvs,20), )y = [ o (9Qua(t)

t=0

1
+ Ez;szg

. T
(u1,u2)y =3 / (t)Rua(t

(17)

where () and R are symmetric positive definite
matrices and F' is a symmetric positive semi-
definite matrix.

In all cases, the initial conditions are taken to
be homogeneous without loss of generality since
the plant response to non-zero initial conditions
can be absorbed into r(t) in a natural manner.
The cost function in each case becomes, with the
specified norms in ) and U, a familiar linear
quadratic performance criterion. For example, in
the case of algorithms of the form considered by
(Frueh and Pham, 2000) and others we have

1
T =5 [AebinQenss) + ul, Russs ()} do
t=0
(18)

In effect, the problem is now a combination of the
well known optimal tracking problem (tracking
of r(t)) and disturbance accommodation prob-
lem (regarding ug(t) as a known disturbance on
trial k + 1) from standard linear systems the-
ory. The cost functions considered in (Frueh and
Pham, 2000) and elsewhere result in the following
solution algorithm

Ukt1 = Uk + OUk41

Sups1 = (R+ PTQP)*(PTQex — Ruy) (19)

(where the matrix P is defined by the plant state
space matrices and is not detailed here). In the
case of norm optimal control, standard optimal
control theory now gives the solution as

Prr1(t) = —ATYp41(t) — CT Qerya (t)
upr1(t) =ug(t) + R BTy (t)
Yry1(T) =CT Fep 1 (T), t €[0,T] (20)

This representation is non-causal (in the standard
sense) but it can be transformed into a causal
implementation as detailed next for the case of
a relaxation factor a.

Transform the costate vector 941 (¢) using

Yry1(t) = —K(t) [pr41(t) — azg ()]
+ Gy (t) (21)

where the feedback gain matrix K (¢) satisfies the
well known Riccati (matrix) differential equation

K(t)=—ATK(t) - K(t)A
+ K(t)BTR'BTK (t) — CTQC
K(T)=CTFC (22)
Note that this last equation of independent of
the inputs, states and outputs of the system and

hence only needs to be computed once before the
sequence of trials begin.

The predictive or ‘feedforward’ term (i1 (t) needs
to be computed on each trial using

Cerr(t) = —(A = BR™'BTK) G ()
— aC" Qex(t)
+ (1 — @) K Bug(t)
—(1-a)CTQr() (23)
with terminal boundary condition

(1 (T) = OTF [aer(T) + (1 — a)r(T)] (24)

The algorithm is now causal since (22) and (23)
can be solved off-line by reverse time simulation
using available previous trial data.

The following is the final form (with no relax-
ation factor) of the implementation algorithm for
predictive optimal ILC (for complete details see
(Amann et al., 1998))

Uk+1 Uk

Up+2 U B
=l - R BERE®

Uk+N Uk



Th+1 Ty,
Th+2 Ty,
X . — —
Tk4+N Ty,
€rr1,n (1)) (25)

K=—-AYK - KAy +
KBnRy'BLK - C%QCy,
K(T)=CH(T)FCn(T)  (26)

) T
1N (t) =— (AN - BNRI_\rleq\;K) Eer1,n (t) —

ex(t)

cxax | Y (27)

ek'(t)

with terminal condition

&eti,n(T)=CKFy
x [eX(T)... eI(T)]" (28)

where Ay is a block diagonal matrix with each
diagonal entry equal to the state matrix A, and
the matrices By and Cpn are constructed in an
identical manner using the matrices B and C
respectively. For the precise form of the weighting
matrices Qn, Ry and Fl, see again (Amann et
al., 1998). In the remainder of this paper, we apply
these algorithms to the two plants defined by (14)
and (15) respectively, where in all simulations
T = 6, and (as required) R = 0.1, Q@ = 10, F =
0, N =5. Also r(t) = sint, uo(t) = 0.

Applying an optimal control algorithm of the form
(19) to the minimum phase plant defined by (14)
is a straightforward task and it has been reported
many times in the literature that this algorithm is
capable of very good performance. Qur experience
shows that in some cases it exhibits slow conver-
gence and involves a matrix inversion which could
result in a high computational cost. Also it is
easy to demonstrate that this algorithm performs
poorly when the plant is non-minimum phase (i.e.
here when applied to (15)). Note also that in some
cases the control signals required can be very large
to the extent that they can be outside the effective
operating ranges of many actuators.

The norm optimal algorithm does not involve
matrix inversion and, because the cost function
penalizes the change in the control input signals
between successive trials, the resulting signals
demanded are generally much smaller than with
an algorithm of the form (19). Overall, we have
found that norm optimal control is more effective
against non-minimum phase dynamics but still
the performance can be rather poor.

Turning to the use of predictive ILC, here we
found that this scheme produces much faster con-

vergence but at the expense of higher computa-
tional cost. Also the performance of such schemes
is significantly dependent on the choice of the
extra design parameters, i.e. the prediction hori-
zon N and the weighting factor A. Space limita-
tions prevent a detailed treatment of this aspect
here and the reader is referred to (Rzewuski et
al., 2001) which also details all of the simulation
studies used in this work. Another advantage of
predictive ILC is that it can give much better
performance when applied to non-minimum phase
processes but note that this could come at the
expense of ‘very strong’ control action. If such
control action is unacceptable then it is still essen-
tially an open research question of how to design
effective ILC control schemes in such cases.

4. CONCLUSIONS

This paper has undertaken a detailed comparative
study of three competing classes of ILC schemes
for linear plants based on optimal control based
design philosophies. The major conclusion is that
those based on the norm optimal approach (in-
cluding augmentation by prediction) have signifi-
cant advantages over alternatives. A major reason
for this is that in the norm optimal approach it
is the difference in the control signals between
successive trials which is penalized as opposed to
the current trial input alone in the alternatives.
The most significant additional factor to be con-
sidered before using predictive ILC is the extra
computational cost but (in general terms) this
should not be excessive unless the plant has a very
large number of states, inputs, and outputs.

In all simulation experiments reported here, the
continuous-time versions of the algorithms were
used. For experimental verification or applications
studies, however, this may not be good practice
due to high computation costs and many numer-
ical problems that often can be avoided through
the use of a discrete time version of a given al-
gorithm. The discrete time version of the norm—
optimal ILC algorithm considered here can be
found in (Amann et al., 1996a).
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