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Abstract: Recently several new LMI conditions for stability of linear systems have been
proposed, introducing additional slack variables to reduce the gap between conservative
convex quadratic stability conditions and intractable non-convex robust stability conditions.
In this paper we show that these improved LMI conditions can be derived with the help of
some basic results on positive polynomial matrices, providing a clear interpretation of the
role of the additional variables. The approach allows to derive in a unifying way results in the
state-space and polynomial frameworks. Applications to robust stability analysis and robust
stabilization of systems with multi-linear parametric uncertainty are fully described.
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1. INTRODUCTION

The main criticism formulated by control engineers
against modern robust analysis and design methods
for linear systems concerns the lack of efficient, easy-
to-use and systematic numerical tools. Indeed, a lot
of analysis techniques and most of the design tech-
niques for uncertain systems boil down to non-convex
bilinear matrix inequality (BMI) problems for which
no polynomial-time algorithm has been proposed so
far. This is especially true when analyzing robust sta-
bility of systems affected by highly structured (para-
metric) uncertainty, or when seeking a robust control
law of low complexity (fixed- or low-order controller
design).

In the control literature, one can distinguish sev-
eral fundamentally different approaches to circum-
vent these difficulties. One can either resort to (a)
global optimization, with a guarantee of convergence,
at the price of a considerable computational burden
that may prove prohibitive; (b) randomized or prob-

abilistic methods that allow to quantify the amount
of confidence one can have in the result; (c) iterative
heuristics based on convex optimization, without guar-
antee of global convergence, but that can prove very
efficient in practice and can solve problems at a low
computational cost; (d) non-iterative sufficient robust-
ness conditions, that rely on convex optimization too,
but can prove overly conservative. In this paper, we
will focus on the latter approach.

Within this scope, new LMI conditions for stabil-
ity of linear systems have recently been introduced
that partially alleviates some degrees of conservatism.
The conditions, that can be traced back to (Geromel,
1998), were originally proposed for discrete-time
systems only (de Oliveira, 1999). Afterwards, then
have been extended to more general stability regions
(Peaucelle, 2000) and other problems in robust con-
trol. The improved LMI conditions feature additional
slack variables allowing some decoupling between the
system state-space matrices and the Lyapunov matrix
proving robust stability. Based on the same idea, sim-
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ilar conditions have also been used to assess robust
stability of polynomial matrices (Henrion, 2001), an
important step when studying uncertain systems in the
polynomial framework (Kučera, 1979). Numerical ex-
periments reported in (Bachelier, 1999) seem to illus-
trate that the improved LMI conditions significantly
narrow the gap between conservative LMI quadratic
stability conditions and intractable non-convex robust
stability conditions. If most of the people agree on
the useful decoupling structure in the new LMI con-
ditions, no satisfying interpretation of these additional
slack variables has been found so far, up to our knowl-
edge.

The purpose of this paper is to provide such an inter-
pretation, and to show how the improved LMI con-
ditions can be readily derived from basic results on
strictly positive real functions and positive polynomial
matrices. The approach is sufficiently general to cover
in a unified fashion continuous-time and discrete-
time systems in the state-space and polynomial frame-
works.

Note that because of space limitation we had to re-
move all the numerical examples motivating and illus-
trating our results. The interested reader is referred to
the full version of our paper, available at

www.laas.fr/˜henrion/Papers/varadd.ps.gz

2. POSITIVITY AND STABILITY OF
POLYNOMIAL MATRICES

Let
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be a stability region in the complex plane, where the
star denotes transpose conjugate and Hermitian matrix
H � H� has inertia ��� �� ��. Standard choices for D
are the left half-plane (a � �,b � �,c � �) and the unit
disk (a � ��,b � �,c � �). Other choices of scalars a,
b and c correspond to arbitrary half-planes and disks.
Let �D denote the one-dimensional closure of D, i.e.
the set fs � C � a � bs � b�s� � css� � �g. In the
sequel we say that a polynomial matrix is stable when
all the roots of its determinant belong to D. Similarly,
we say that a rational matrix is strictly positive real
(SPR) when its real part is positive definite when
evaluated along �D.

In the paper we will consider square polynomial matri-
ces N �s� � N��N�s�� � ��Nds

d and D�s� � D��
D�s � � � ��Dds

d of size n and degree d.

Lemma 1.Polynomial matrix N �s� is stable if and
only if there exists a stable polynomial matrix D�s�
such that rational matrix N �s�D���s� is SPR.

Proof: From the definition of an SPR rational ma-
trix, N �s�D���s� SPR with D�s� stable implies
N �s� stable. Conversely, if N �s� is stable then the
choice D�s� � N �s� makes the rational matrix
N �s�D���s� � I obviously SPR. �

When D�s� is a given stable polynomial matrix,
Lemma 1 is a sufficient condition for stability of ma-
trix polynomial N �s�. Let N denote the set of co-
efficients of all polynomial matrices N �s� of degree
d, let S denote the subset of N corresponding to
stable polynomial matrices only, and let SD denote
the subset of N such that N �s�D���s� is SPR. Then
it holds SD � S � N . It is well-known that S is
generally not a convex set. In contrast, it turns out
that SD is a convex set (an inner approximation of
the actual stability domain) that can be described by
a linear matrix inequality (LMI), as captured by the
following

Lemma 2.Let N � �N�N� � � �Nd	,D � �D�D� � � �Dd	
and
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be a projection matrix of size �dn � �d � ��n.
Given a stable polynomial matrix D�s�, polyno-
mial matrix N �s� ensures SPRness of rational ma-
trix N �s�D���s� if and only if there exists a matrix
P � PT of dimension dn such that

DTN � NTD �H�P � � � (1)

where

H�P � � 
T �H � P �
 � 
T

�
aP bP

b�P cP

�

�

Proof: SPRness of N �s�D���s� is equivalent to the
infinite dimensional matrix inequalityN �s�D���s��
D���s�N��s� � � for all s in �D where the star
denotes transpose conjugate. Polynomial matrix D�s�
being non-singular along �D, we can equivalently
write D��s�N �s� � N��s�D�s� � � for all s in
�D. Let 
d�s� � �In sIn � � � sdIn	

T be a basis for
polynomial matrices of size n and degree d. It holds

�
d�s�
d�s� � �� � ss� � � � � � �ss��d�In � �

for all s in �D so that there always exists a strictly
positive scalar � such that R�s� � D��s�N �s� �
N��s�D�s� � �
�

d�s�
d�s� � � for all s in �D.
Therefore, SPRness of the original rational matrix is
equivalent to positivity of polynomial matrix R�s�
along the stability boundary. This idea has already
been pursued e.g. in (Stipanović, 2000).



From the structure of the linear map H�P �, one can
check that 
�

d�s�H�P �
d�s� � �a � bs � b�s� �
css��
�

d���s�P
d���s� � � for all s in �D and
it is easy to see that matrix P � P T captures the
whole degrees of freedom one has when representing
polynomial matrix R�s� in the basis 
d�s�, see e.g.
(Genin, 2000). In other words, R�s� � 
�

d�s�R
d�s�
if and only if there exists P � P T such that R �
DTN �NTD �H�P �� �I�d���n.

The remaining of the proof then consists in showing
that R�s� � � along �D if and only R � � for
some P � PT and some � � �, or equivalently, if
and only if LMI (1) holds for some P � P T . This
follows from the decomposition as a sum of squares
of R�s� �

P
iQ

�
i �s�Qi�s�, see e.g. (Nesterov, 2000;

Lasserre, 2001). �

Combining Lemma 1 with Lemma 2, we deduce the
following result which will be instrumental to the
derivation of the LMI stability conditions throughout
the sequel of the paper.

Lemma 3.Polynomial matrix N �s� is stable if and
only if there exists a stable polynomial matrix D�s�
and a matrix P � PT satisfying LMI (1).

3. CONNECTION WITH EXISTING LMI
STABILITY CONDITIONS

In this section, we show that we can easily recover
the improved LMI stability conditions of (de Oliveira,
1999; Peaucelle, 2000) with the help of Lemma 3.
For notational simplicity, throughout the paper we will
denote symmetric blocks in LMIs by a star.

3.1 State-space Framework

Stability of the pencil matrix N �s� � sI � A is
equivalent to stability of the constant matrix A, and
the LMI condition of Lemma 3 yields the following

Lemma 4.MatrixA is stable if and only if there exists
a stable matrix F and a matrix P � PT satisfying�

FTA� ATF � aP �

�A� F � b�P �I � cP

�
�

�
�FT

I

� �
�A I
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(2)

Proof: Just let D�s� � sI � F in Lemma 3. �

So far we have made little progress since we have
shown that checking stability of some matrix A

amounts to checking stability of some other matrix
F plus checking some LMI condition in a matrix

P � PT . The next result shows that, provided P is
positive definite, one can relax the stability constraint
on F .

Lemma 5.MatrixA is stable if and only if there exists
a matrix F and a matrix P � PT � � satisfying LMI
(2).

Proof: Assume that LMI (2) holds for some P �
PT � �. Then
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In virtue of Lyapunov’s Theorem (see e.g. (Henrion,
2001c)), this implies that A is stable. Conversely, if A
is stable then by Lemma 4 there exists a stable matrix
F and a matrix P � PT satisfying LMI (2). Then
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Since F is stable, we can invoke Theorem 2.2.3 in
(Horn, 1991) to conclude that P � �. �

3.2 Polynomial Framework

Now if we assume that N �s� is an arbitrary polyno-
mial matrix, Lemma 5 becomes

Lemma 6.Polynomial matrix N �s� is stable if and
only if there exists a polynomial matrix D�s� and a
matrix P � P T � � satisfying

DTN �NTD �H�P � � �� (3)

Proof: We proceed as in the proof of Lemma 5,
showing that the requirement that D�s� be stable in
Lemma 3 amounts to enforcing positivity of P . The
projection of LMI (3) must be done on the subspace
spanned by the columns of matrix�

����
In

. . .
In

�D� � � � �Dd��
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and stability is proved with Lyapunov’s Theorem ap-
plied to the companion matrix associated with polyno-
mial matrix D�s�, which is here assumed to be monic



for simplicity. The non-monic case can be treated sim-
ilarly. �

A slightly different version of Lemma 6 appeared
in (Henrion, 2001b), with a different proof based
on quadratic programming and semidefinite program-
ming duality.

Lemma 7.(Henrion, 2001b) Polynomial matrix N �s�
is stable if and only if there exists a matrix P � P T �
� satisfying NTN �H�P � � �.

Proof: It is an application of the projection lemma, an
algebraic result well-known to the control community,
see e.g. (Skelton, 1998, Theorem 2.3.12). �

4. APPLICATION TO ROBUST STABILITY
ANALYSIS

4.1 State-space Framework

The nice feature in Lemma 5 is that system matrix A
and Lyapunov matrix P are decoupled in the sense
that, contrary to the standard Lyapunov inequality,
there is no cross-product between A and P . When A is
affected by parametric uncertainty, this allows for the
construction of a parameter-dependent Lyapunov ma-
trix significantly narrowing the gap between conserva-
tive standard quadratic stability results (corresponding
to a parameter-independent Lyapunov matrix) and in-
tractable robust stability results.

We assume that system matrix is affected by multi-
linear (or multi-affine) uncertainty, i.e. A��� depends
on a m-dimensional vector of uncertain scalar param-
eters �i living in some hyper-rectangle �, and A���
is linear in the parameter �i when all the remaining
parameters �j , j 
� i are fixed. For notational simplic-
ity, we denote by Ai for i � �� � � � �m the vertices of
A��� obtained by enumerating each vertex of �. The
following robust stability analysis result is a straight-
forward application of Lemma 5.

Lemma 8.(de Oliveira, 1999; Peaucelle, 2000) Multi-
linear matrix A��� with vertices Ai is robustly stable
if there exists a matrix F and matrices Pi � PT

i � �
satisfying the LMI�

FTAi �AT
i F � aPi �

�Ai � F � b�Pi �I � cPi

�
� ��

i � �� � � � �m�
(4)

Proof: Since LMI (4) is simultaneously linear in Ai

and in Pi, parameter � enters multi-linearly in A���,
and � is a hyper-rectangle, it follows that�

FTA��� �AT ���F � aP ��� �

�A��� � F � b�P ��� �I � cP ���

�
� �

where P ��� � � is a parameter-dependent multi-
linear Lyapunov matrix proving robust stability of
matrix A��� in virtue of Lemma 5. �

4.2 Polynomial Framework

Similarly, the LMI condition of Lemma 6 is simulta-
neously linear in coefficients ofN �s� and in Lyapunov
matrix P . This property can be exploited to provide
less conservative convex conditions for assessing ro-
bust stability of polynomial matrices.

As in the previous section, we assume that N �s� �� is
a polynomial matrix with multi-linear dependence in
a parameter vector � that lives in a hyper-rectangle.
When � describes the vertices of � we will denote the
vertices of N �s� �� by Ni�s� for i � �� � � � �m. With
these notations, the polynomial counterpart of Lemma
8 can be formulated as follows.

Lemma 9.(Henrion, 2001) Multi-linear polynomial
matrixN �s� �� with verticesNi�s� is robustly stable if
there exists a matrixD and some matrices Pi � PT

i �
� satisfying the LMI

DTNi �NT
i D �H�Pi� � �� i � �� � � � �m�(5)

Proof: See the proof of Lemma 8, where we use
Lemma 6. �

5. APPLICATION TO ROBUST DESIGN

5.1 State-space Framework

In this section we will consider the problem of robust
structured static state feedback of a system whose ma-
trices A��� and B��� are multi-linear functions of the
parameters �i living in a hyper-rectangle � accounting
for the uncertainty affecting the system. We denote by
Ai and Bi for i � �� � � � �m the respective vertices of
A��� and B��� when � describes the vertices of �.

We assume that the sought static state feedback matrix
K is subject to convex structural constraints that can
be captured by an LMI

G�K� � �� (6)

For example, one can impose a block diagonal struc-
ture on K to address problems of decentralized con-
trol. We can also enforce a quadratic norm constraint
KTK � I to ensure a low-gain feedback. Finally,
the problem of robust static output feedback can also
fit this scope, the static state feedback matrix being
linearly constrained to K � K�C for some static
output feedback matrix K� to be found.



In Lemma 4, LMI (2) is simultaneously linear in
system matrix A and Lyapunov matrix P , so we can
easily derive the following

Lemma 10.System A���, B��� with multi-linear un-
certainty and vertices Ai and Bi is robustly stabiliz-
able by a constrained static state feedback K if, given
a stable matrixF , there exists some matrices Pi � PT

i

satisfying the LMI�
�����

�
� FT �Ai � BiK�

��Ai �BiK�TF
�aPi

�
A �

�
��Ai �BiK�
�F � b�Pi

�
�I � cPi

	




� � �

i � �� � � � �m

(7)

with the additional LMI constraint (6).

5.2 Polynomial Framework

Now we will extend Lemma 3 to perform robust de-
sign of linear systems described by polynomial ma-
trices. The transfer function of the uncertain linear
system is B�s� ��A���s� �� where both A�s� �� and
B�s� �� are polynomial matrices that are multi-linear
in a parameter vector � that lives in a hyper-rectangle
�. The design problem amounts to finding a dynam-
ical output-feedback controller with transfer function
X���s�Y �s� such that the closed-loop denominator
matrix N �s� �� � A�s� ��X�s� � B�s� ��Y �s� is ro-
bustly stable for all admissible uncertainty vector �.
As usual, when � describes the vertices of � we will
denote the vertices ofA�s� ��, B�s� �� and N �s� �� by
Ai, Bi and Ni respectively, for i � �� � � � �m.

Exactly as we assumed in the state-space framework
that the static feedback matrix K satisfies structural
LMI constraints, we assume here that the controller
polynomial matrices X�s� � X� � X�s � � � � and
Y �s� � Y��Y�s� � � � entering linearly in polynomial
matrix N �s� �� have prescribed structure, which we
denote by the LMI

G�N � � �� (8)

For example, we can assume thatX�s� and Y �s� have
given (presumably low) degree. Some coefficients in
X�s� and Y �s� may be given, such as with a PID
controller Y �s�

X�s� � kP � kI
s

� kDs where X� � �,
X� � �, X� � � and Y� � kI, Y� � kP , Y� � kD.

Under these assumptions, the polynomial counterpart
of Lemma 10 can be formulated as follows.

Lemma 11.System A�s� ��, B�s� �� with multi-linear
uncertainty and vertices Ai�s�, Bi�s� is robustly sta-
bilizable by a constrained output feedback controller
X�s�, Y �s� if, given a stable polynomial matrix D�s�
of the same degree as polynomial matrices Ni�s� �

Ai�s�X�s� � Bi�s�Y �s�, there exists some matrices
Pi � PT

i satisfying the LMI

DTNi �NT
i D �H�Pi� � �� i � �� � � � �m�(9)

with the additional LMI constraint (8).

6. CONCLUSION

We have proposed a new approach to derive improved
LMI robustness conditions, narrowing the gap be-
tween conservative convex quadratic stability condi-
tions and intractable non-convex robust stability con-
ditions. The approach is general enough to treat in a
unifying way continuous-time and discrete-time sys-
tems in the state-space and polynomial frameworks. It
is based on the theory of positive polynomial matrices:
stability of a polynomial matrixN �s� is ensured if and
only if some bilinear polynomial matrix form in N �s�
and D�s� is positive along the stability boundary for
some stable polynomial matrix D�s� to be found.

Usually, polynomial matrix N �s� is unknown (it may
depend linearly on design parameters) and polynomial
matrix D�s� is given (it plays the role of an additional
slack variable decoupling N �s� from the Lyapunov
matrix). So when N �s� is assumed to belong to a
given set accounting for possible uncertainty affecting
some dynamical system, one important step in solving
the robustness problem amounts to finding a sensible
choice of an additional variable D�s�. Based on the
numerical examples described in the full version of
this paper, it is tempting to set D�s� to some nominal
value of N �s� , that is to say the nominal closed-loop
system denominator matrix obtained with a standard
design algorithm in the absence of uncertainty. In
particular, it is believed that such a choice can prove
useful in heuristic iterative design schemes based on
cone complementarity, where N �s� and D�s� are iter-
atively sought and an initial guess onD�s� is generally
required to start the overall algorithm. However, re-
cent findings on robust SPR design with l� uncertainty
(Bianchini, 2001) tend to show that the choice of the
nominal polynomial N �s� as an additional variable
D�s� is not always appropriate. This point needs to
be studied in deeper detail.

We have studied robust stability matrices and polyno-
mial matrices affected by (highly structured) multi-
linear interval uncertainty. We are now applying the
same ideas to linear systems affected by (unstructured)
ellipsoidal uncertainty, also known as l�, or rank-one
uncertainty. We may also extend our approach to meet
other requirements that mere stability, such as H� or
H� performance, tracking or disturbance rejection.
Related results will be reported elsewhere.

Besides providing a clear, new interpretation of the
additional variables featured in the improved LMI
robustness conditions, the approach proposed in this
paper is also interesting from the numerical point of



view. Indeed, the Hankel or Toeplitz structure of the
dual LMI problem associated with problems coming
from positivity of polynomials can be exploited to
reduce the computational cost of solving the original
primal problem, as shown in (Alkire, 2001). Numeri-
cal properties of these kind of optimization problems
must however be studied in further detail, since the
Hankel structure is often synonymous of bad numeri-
cal conditioning, as pointed out in (Genin, 2000b).
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