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Abstract: Singular systems are dynamical systems subject to algebraic constraints, and
arise in many engineering disciplines. The output regulation problem for singular nonlin-
ear systems has been studied recently for the ideal case where the mathematical model is
exactly known. This paper will further consider the robust output regulation problem for
a class of singular nonlinear systems which contain uncertain parameters. It will establish
the conditions for the solvability of the problem, thus extending the existing results from
the normal nonlinear systems to the singular nonlinear systems. Copyright @ 2002 IFAC
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1. INTRODUCTION

Singular systems arise in many engineering areas such
as electrical networks, power system, aerospace engi-
neering and chemical processing. Since the late 1970s
singular systems have attracted attentions from many
researchers. Several books and survey papers dealing
with these systems have appeared addressing the issues
of solvability, controllability and observability, pole
assignment, the elimination of impulsive behavior, and
so on (Cobb, 1984; Lewis, 1985; Dai, 1989; Campbell
and Griepentrog, 1995). This paper will consider the
robust output regulation problem for a class of sin-
gular nonlinear systems to be described in Section 2.
Briefly, the output regulation problem aims to design
control laws for a plant so that the output of the closed-
loop system is able to asymptotically track a class
of reference inputs and reject a class of disturbances.
Both the disturbance and reference are generated by
an autonomous differential equation called exosystem.
When the controller is also required to tolerate certain
plant uncertainty, the problem is called robust output

1 The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special
Administration Region (Project No. CUHK4400/99E).

regulation problem. For the class of linear systems,
this problem was thoroughly studied for the normal
systems in the 1970s in (Francis, 1977; Francis and
Wonham, 1976) among others. A salient outcome of
these research activities is the internal model principle
which is the extension of the well known PID control.
The problem was also investigated for linear singular
systems in 1980s (Dai, 1989). Recently, a more clear-
cut solution of this problem for linear singular systems
was obtained in (Lin and Dai, 1996). For the class of
nonlinear systems, the same problem was first treated
for the normal systems. The special case in which
the exogenous signals are constant were studied in
(Francis and Wonham, 1976; Huang and Rugh, 1990).
The general case with time varying exogenous signals
was studied in (Isidori and Byrnes, 1990) without con-
sidering the parameter uncertainty. Subsequently, the
robust version of the same problem was pursued in
(Huang and Lin, 1991,1993; Huang, 1996; Byrnes, et
al., 1997). More recently, the output regulation prob-
lem for singular nonlinear systems has been formulated
and solved in (Huang and Zhang, 1998). The objective
of this paper is to further pursue the research initiated
in (Huang and Zhang, 1998) by considering the plant
uncertainty.
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2. PROBLEM DESCRIPTION AND STANDARD
ASSUMPTIONS

Consider the plant described by

Eẋ�t� � f �x�t��u�t��v�t��w��x�0� � x0
y�t� � h�x�t��v�t��w�� t � 0

(2.1)

and an exosystem described by

v̇�t� � a�v�t���v�0� � v0 (2.2)

where x�t� � ℜ n is the plant state, u�t� � ℜ m the plant
input, y�t�� ℜ p the plant output representing the track-
ing error, v�t� � ℜ q the exogenous signal representing
the disturbance and/or the reference input, w � ℜ N the
plant unknown parameters, and E � ℜ n�n a singular
constant matrix, and rank �E� � nE � n. It is noted that
if nE � n, the plant is called normal. Also it is assumed
that 0 is the nominal value of the uncertain parameters
w.

This paper will focus on the dynamic output feedback
controller as follows:

u�t� � k�z�t��y�t��
ż�t� � g�z�t��y�t��

(2.3)

where z�t� is the compensator state vector of dimension
nc. When the state of the system is available, the state
feedback control law can be considered accordingly.

The closed-loop system composed of plant (2.1), (2.2)
and control law (2.3) can be put into the following
form:

Ecẋc�t� � fc�xc�t��v�t��w��xc�0� � xc0
y�t� � hc�xc�t��v�t��w�

(2.4)

where

xc �

�
x
z

�
�Ec �

�
E 0
0 Inc

�
fc �xc�v�w� �

�
f �x�k�z�h�x�v�w���v�w�

g�z�h�x�v�w��

�
hc �xc�v�w� � h�x�v�w�

(2.5)

Throughout this paper, it is assumed that all the func-
tions involved in this setup are sufficiently smooth and
defined globally on the appropriate Euclidean spaces,
and a�0� � 0, f �0�0�0�w� � 0, and h�0�0�0�w� � 0 for
any w �W with W an open neighborhood of the origin
of ℜ N . Our results will be stated locally in terms of
V and W with V an open neighborhood of the origin
in ℜ q. In the sequel, V and W are implicitly permitted
to be made smaller to accommodate subsequent local
arguments.

The linearization of the system (2.1) and (2.2) at
�x�u�v� � �0�0�0� will be frequently used, therefore,
the following notation is given,

A�w� �
∂ f
∂x

�x�0�u�0�v�0�B�w� �
∂ f
∂u

�x�0�u�0�v�0�

E �w� �
∂ f
∂v

�x�0�u�0�v�0�C �w� �
∂h
∂x

�x�0�u�0�v�0�

F �w� �
∂h
∂v

�x�0�u�0�v�0�A1 �
∂a�v�

∂v
�v�0�

Ac �w� �
∂ fc

∂xc
�xc0�v�0

As a result, the system (2.1) and (2.2) can also be
written as

Eẋ � A�w�x�B�w�u�E�w�v�o�x�u�v�w�
y �C�w�x�F�w�v�o�x�u�v�w�
v̇ � A1v�o�v�

where o�x�u�v�w� (or o�v�) is a sufficiently smooth
function vanishing at �x�u�v� � �0�0�0� (or v � 0)
together with its first order derivative for any w � W .
For convenience, let A�B� � � � � denote A�0��B�0�� � � � �
respectively.

The robust output regulation problem: Find a con-
trol law such that the closed-loop (2.4) has the two
properties:

(P1) the linearization at xc � 0 of Ecẋc�t�� fc�xc�t��0�0�
is strongly stable, that is, deg�det�λ Ec�Ac�� rank�Ec��

and σ�Ec�
Ac� � c�, where σ�Ec�

Ac�
�
� �λ �det�λ Ec �

Ac� � 0��

(P2) the trajectories starting from all sufficiently small
initial state

�
xc0�v0

�
satisfy

lim
t�∞

y�t� � lim
t�∞

hc�xc�t��v�t��w� � 0 (2.6)

Remark 2.1: The above problem is clearly an exten-
sion of the problem studied in (Huang and Zhang,
1998) by taking into account the uncertainty. Viewing
w as generated by an exosystem of the form ẇ � 0,
a solvability condition can be obtained, by slightly
modifying Lemma 4.1 of (Huang and Zhang, 1998),
as follows:

Theorem 2.2: Assume the following,
A1: The equilibrium of exosystem (2.2) is stable and
all the eigenvalues of (∂a�∂v��0� have zero real parts.

Then the controller (2.3) solves the robust output reg-
ulation problem of singular uncertain system (2.1) and
(2.2) if it is such that the closed-loop system satisfies

(i) (P1) holds.

(ii) there exists a sufficiently smooth function xc �v�w�
locally defined in V �W satisfying xc �0�0� � 0 and

Ec
∂xc�v�w�

∂v
a�v� � fc�xc�v�w��v�w�

hc�xc�v�w��v�w� � 0
(2.7)

To close this section, some standard assumptions will
be listed.

A2: (E�A�B) is strongly stabilizable, i.e., there exists
a matrix K � ℜ m�n such that �E�A�BK� is strongly
stable.

A3: (E�A�C) is strongly detectable, i.e., there exists
a matrix K � ℜ n�p such that �E�A�KC� is strongly
stable.



A4: There exist sufficiently smooth functions x�v�w�
and u�v�w� such that x�0�0� � 0 and u�0�0� � 0 and
satisfy, for v �V�w �W

E
∂x�v�w�

∂v
a�v� � f �x�v�w��u�v�w� �v�w�

h�x�v�w��v�w� � 0
(2.8)

Remark 2.3: When E is an identity matrix, Assump-
tions A2 and A3 reduce to exactly the same ones as-
sumed by (Isidori and Byrnes, 1990) for the normal
systems. Equation (2.8) becomes the so called regula-
tor equations discovered by Isidori and Byrnes.

3. A PRELIMINARY RESULT

Recall that, in the normal case, the way to handle the
robust output regulation problem is much more com-
plicated than the way to handle the output regulation
problem. This is because, when there is no uncertainty,
the solution of equation (2.8) or its estimation can be
used as a feedforward function to cancel the steady
state error output. But this is impossible when the un-
certain parameter w is present since the solution of the
equation (2.8) also depends on w which cannot appear
in the control law. As a result, the problem has to be ap-
proached with the employment of a nonlinear version
of the internal model principle (Huang, 1996; Huang
and Lin, 1991, 1993; etc). Here this technique will be
further extended to the singular nonlinear systems. To
begin with, some notations that have been used fre-
quently in (Huang, 1996; Huang and Lin, 1991,1993)
are first introduced. For any matrix M, k � 1�2� � � �
define

M�0� � I�M�1� � M� � � � �M�k� � M	�� �	M� �� �
k f actors

where 	 denotes the Kronecker product. Also let v �l�

denote the vector

v�l� � �vl
1�v

l�1
1 v2� � � � �v

l�1
1 vq�v

l�2
1 v2

2�v
l�2
1 v2v3� � � � �

vl�2
1 v2vq� � � � �v

l
q�

T

It was shown in (Huang, 1996) that if v satisfies v̇�A1v
for some square matrix A1, then there exist square
matrices Al � l � 2�3� � � � � such that

v̇�l��t� � Alv
�l��t�� l � 2�3� � � �

In fact, Al can be explicitly given as

Al � Ml

	
l

∑
i�1

I�i�1�
q 	A1	 I�l�i�

q



Nl

where Ml and Nl are such that v�l� � Mlv
�l��v�l� � Nlv

�l�

and Iq denote the q dimensional identity matrix. As in
(Huang , 1996), the following autonomous system is
called K-fold exosystem.

�
���


v̇�1�

v̇�2�

...
v̇�k�

�
�����

�
���


A1 0 � � � 0
0 A2 � � � 0
...

...
...

...
0 0 � � � Ak

�
����
�
���


v�1�

v�2�

...
v�k�

�
���� (3.1)

A linear result which will play an important role in
establishing the major result is first stated.

Lemma 3.1: Given any square matrix Â1 such that all
the eigenvalues of Â1 are on the closed right complex
plane, let βi � ℜ ni�ni �σi � ℜ 1�ni , i � 1� � � � �r, for some
positive integers n1� � � � �nr�r, satisfy the following

(i) βi and σi are controllable, and

(ii) the minimal polynomial of Â1 divides the charac-
teristic polynomial of βi,

let
G1 � block diag

�
β1� � � � �βr

�
�

G2 � block diag
�
σ1� � � � �σr

�
and finally, let matrices g1 and g2 admit the following
form

g1 � T

�
S1 S2
0 G1

�
T�1� g2 � T

�
S3
G2

�
where S1�S2�S2 are any matrices with proper dimen-
sions, and T is a nonsingular matrix. Then, for any
matrices Â� B̂�Ĉ�D̂ with appropriate dimensions, if the
matrix �

Â B̂
g2Ĉ g1 �g2D̂

�
(3.2)

is Hurwitz, then for any �U�V � with proper dimension,
the linear matrix equation

φÂ1 � Âφ� B̂θ �U
θÂ1 � g1θ �g2�Ĉφ� D̂θ �V �

(3.3)

has a unique solution which satisfies

Ĉφ� D̂θ �V � 0 (3.4)

Proof: The proof is quite similar to Theorem 2.1 of
(Huang, 1995). Since (3.3) is a Sylvester equation,
it follows from the assumptions on matrices Â1 and
(3.2) that equation (3.3) has a unique solution. To
show (3.4), let θ � �θ̂T � θ̄T �T , where θ̄ has the same
dimension as that of G1. Then the second equation of
(3.3) implies

θ̄Â1 �G1θ̄ � G2Y (3.5)

where Y � Ĉφ� D̂θ �V .

Due to the block diagonal structure of G1�G2, r � 1
can be assumed without loss of generality. Therefore,
we can write G1�G2 in the following form:

G1 �

�
�����


0 1 � � � 0 0
0 0 � � � 0 0
...

...
...

...
...

0 0 � � � 0 1
�αnk

�αnk�1 � � � �α2 �α1

�
������ �G2 �

�
�����


0
0
...
0
1

�
������



Let θ j � j � 1� � � � �nk, denote the jth row of θ̄ . Then
expanding (3.5) gives

Y � θ1�Â
nk
1
�α1Ânk�1

1
� � � ��αnk

I�

Noting that the characteristic polynomial of G1 is di-
visible by the minimal polynomial of Â1 gives Y � 0.

Lemma 3.2: Under assumption A1, for any positive

integer k, let Â1 �

�
���


A1 0 � � � 0
0 A2 � � � 0
...

...
...

...
0 0 � � � Ak

�
����. Let a linear con-

troller of the form

u � K1z�K2y
ż � g1z�g2y

(3.6)

be given where g1 and g2 are given as in Lemma 3.1
with r � p. Then, if the controller (3.6) makes the pair��

E 0
0 Inc

�
�

�
A�BK2C BK1

g2C g1

��
(3.7)

strongly stable, then the closed-loop system composed
of (2.1), (2.2) and controller (3.6) has the property
that there exists a sufficiently smooth function xc�v�w�
locally defined in V �W satisfying xc �0�0� � 0, and

Ec
∂xc�v�w�

∂v
a�v� � fc�xc�v�w��v�w�

hc�xc�v�w��v�w� � O
�

vk�1
� (3.8)

where O
�
vk�1

�
is such that limv�0


O�vk�1�

�v�k�1 is a finite

constant.

Proof: This result will be established by performing
the standard coordinate transformation on the closed-
loop system. To this end, first note that the closed-loop
system composed of (2.1),(2.2) and (3.6) can be written
as follows,

Eẋ � �A�w��B�w�K2C�w��x�B�w�K1z
��E�w��B�w�K2F�w��v�o�x�u�v�w�
ż � g2C�w�x�g1z�g2F�w�v
�o�x�u�v�w�
y �C�w�x�F�w�v�o�x�u�v�w�
v̇ � A1v�o�v�

(3.9)

Let T1 and T2 be two nonsingular matrices such that

T1ET2 �

�
InE

0
0 0

�
. Let

T1A�w�T2 �

�
A11�w� A12�w�
A21�w� A22�w�

�
�T1B�w� �

�
B1�w�
B2�w�

�
�

T1E�w� �

�
E1�w�
E2�w�

�
�C�w�T2 �

�
C1�w� C2�w�

�
�

T�1
2 x �

�
x̄1
x̄2

�
with A11�w�� ℜ nE�nE �B1�w�� ℜ nE�m�E1�w�� ℜ nE�q�C1�w��
ℜ p�nE � x̄1 � ℜ nE , and all other matrices have proper
dimensions.

In terms of x̄1 and x̄2, the first equation of (3.9) be-
comes

˙̄x1 � Ā11�w�x̄1 � Ā12�w�x̄2 � B̄1�w�K1z
�Ē1�w�v�o�x�z�v�w�
0 � Ā21�w�x̄1 � Ā22�w�x̄2 � B̄2�w�K1z
�Ē2�w�v�o�x�z�v�w�

(3.10)

where

Āi j�w� � Ai j �w��Bi �w�K2Cj �w�

B̄i�w� � Bi�w�

Ēi�w� � Ei �w��Bi �w�K2F �w� � i� j � �1�2�
Note that the strong stability of (3.7) implies that
det

�
Ā22

�
�� 0. Thus the implicit function theorem guar-

antees the existence of a unique sufficiently smooth
solution of the second equation of (3.10), and this so-
lution has the form

x̄2 � γ�x̄1�z�v�w� ��Ā�1
22 Ā21x̄1� Ā�1

22 B̄2K1z

� Ā�1
22 Ē2v�o�x̄1�z�v�w� (3.11)

Substituting (3.11) into the first equation of (3.10) and
the second and third equations of (3.9) gives a reduced
order normal system as follows

˙̄x1 � f̄1c�x̄1�z�v�w� � Âx̄1 � B̂z� Êv
�o�x̄1�z�v�w�
ż � g1z�g2y
y � h̄c�x̄1�z�v�w� � Ĉx̄1 � D̂z� F̂v
�o�x̄1�z�v�w�

where

Â �
�
Ā11� Ā12Ā�1

22 Ā21

�
� B̂ �

�
B̄1� Ā12Ā�1

22 B̄2

�
K1�

Ĉ �
�
C1�C2Ā�1

22 Ā21

�
� D̂ �

�
�C2Ā�1

22 B̄2

�
K1�

Ê �
�
Ē1� Ā12Ā�1

22 Ē2

�
� F̂ �

�
F �C2Ā�1

22 Ē2

�
Again if follows from the strong stability of (3.7) that
the matrix �

Â B̂
g2Ĉ g1 �g2D̂

�
(3.12)

is Hurwitz. Thus, from the center manifold theorem
(Carr, 1981), there exists sufficiently smooth func-
tions x̄�k�

1
�v�w� and z�k� �v�w� with x̄�k�

1
�0�0� � 0, and

z�k� �0�0� � 0 satisfying

∂ x̄�k�
1

�v�w�

∂v
a�v� � f̄1c�x̄

�k�
1

�v�w� �z�k� �v�w� �v�w�

∂z�k� �v�w�

∂v
a�v� � g1z�k��v�w��g2y�v�w�

y�v�w� � h̄c�x̄�k�1
�v�w� �z�k� �v�w� �v�w�

(3.13)

In terms of notation v�l�, x̄�k�
1

�v�w� �z�k� �v�w� and y�v�w�
can be uniquely expressed as

x̄�k�
1

�v�w� �
k

∑
l�1

φlwv�l��O
�

vk�1
�

z�k� �v�w� �
k

∑
l�1

θlwv�l��O
�

vk�1
�

y�v�w� �
k

∑
l�1

Ylwv�l��O
�

vk�1
�

(3.14)



Substituting (3.14) into (3.13), expanding (3.13) as
power series in v�l�� l � 1� � � � �k, yield the following

φlwAl � Âφlw � B̂θlw �Ûlw
θlwAl � g1θlw �g2�Ĉφlw � D̂θlw � V̂lw�

Ylw � Ĉφlw � D̂θlw � V̂lw

(3.15)

where
�
Û1w�V̂1w

�
�
�
Ê� F̂

�
, and for l � 2�3� � � �,

�
Ûlw�V̂lw

�
depends only on φ1w� � � � �φ�l�1�w and θ1w� � � � �θ�l�1�w.

(3.15) is the Sylvester equation described in Lemma
3.1, and satisfies all conditions of Lemma 3.1. There-
fore, it has a unique solution for any

�
Ûlw�V̂lw

�
and the

solution satisfies

Ylw � 0� l � 1� � � � �k (3.16)

Thus

y�v�w� � h̄c�x̄�k�1
�v�w� �z�k� �v�w� �v�w�

� O
�

vk�1
�

(3.17)

Finally define

x̄�k�
2

�v�w� � γ�x̄�k�
1

�v�w� �z�k� �v�w� �w�

x�k� �v�w� � T2�x̄
�k�
1

�v�w�T � x̄�k�
2

�v�w�T �T

xc�v�w� � �x�k� �v�w�T �z�k� �v�w�T �T
(3.18)

Then it is ready to verify that xc�v�w� satisfies (3.8)
upon using (3.13), (3.17), and (3.18).

Remark 3.3: It has been shown in (Dai, 1989) that,
given a linear singular system of the form

Eẋ � Ax�Bu�Ev�
y �Cx�Fv
v̇ � Â1v

(3.19)

with x � ℜ n�u � ℜ m�y � ℜ p, which satisfies assump-
tions A2 and A3, and

A5:

rank

�
A�Eλ B

C 0

�
� n� p��λ � σ

�
Â1

�
and matrices g1 and g2 that are constructed according
to Lemma 3.1 with r � p, there exist two matrices K1
and K2 such that the pair��

E 0
0 Inc

�
�

�
A�BK2C BK1

g2C g1

��
(3.20)

is strongly stable. As a result, the following result is
obtained.

Corollary 3.4: Under assumptions A1 to A3, assume
the plant composed of (2.1) and (2.2) satisfies A5 with
Â1 � diag �A1� � � � �Ak�, then there exists a controller of
the form (3.6) such that property P1 holds and equation
(3.8) is satisfied.

Remark 3.5: It can be shown using the center manifold
theory (Carr, 1981; Isidori and Byrnes, 1990) that if the
closed-loop system satisfies Property P1 and equation
(3.8), then for sufficiently small

�
xc0�v0

�
, the solution

of the closed-loop system exists for all t � 0, and is
bounded, and

limsup
t�∞

y�t� � O
�

vk�1�t�
�
� �w �W

For this reason, a controller that renders the closed-
loop system these two properties is called kth-order
robust regulator.

4. SOLVABILITY OF THE PROBLEM

The kth-order robust regulator is interesting in its own
since it guarantees the steady state tracking error of
the closed-loop system is in the order of k � 1 of
the exogenous signal regardless of the small variation
of the uncertain parameter w. Moreover, under some
additional assumptions, the kth-order robust regulator
actually solves the robust output regulation problem.

A6: The exosystem is linear, that is, a�v� � A1v.

Theorem 4.1: Under assumptions A1 to A6, and sup-
pose u�v�w� is kth degree polynomial in v, then the
same controller that solves the kth-order robust out-
put regulation also solves the robust output regulation
problem.

Proof: By assumptions, there exist a linear control
law of the form (3.6) that solves the kth-order robust
regulation problem. Clearly, the closed-loop system
composed of the plant and this control law satisfies
condition (i) of Theorem 2.2. We need to show that the
closed-loop system also satisfies condition (ii) of The-
orem 2.2. To this end, consider the following system

Eẋ � f
�
x�u�K2y�v�w

�
y � h�x�v�w�

(4.1)

Performing the same coordinate transformation on
(4.1) as what was done for the closed-loop system (3.9)
in the proof of Lemma 3.2 gives

˙̄x1 � f̄1

�
x̄1�u�v�w

�
y � h̄

�
x̄1�u�v�w

� (4.2)

where x̄1 is such that T�1
2 x�

�
x̄T

1 � x̄
T
2

�T
, and f̄1

�
x̄1�u�v�w

�
,

and h̄
�
x̄1�u�v�w

�
is such that

f̄1

�
x̄1�K1z�v�w

�
� f̄1c

�
x̄1�z�v�w

�
h̄
�
x̄1�K1z�v�w

�
� h̄c

�
x̄1�z�v�w

� (4.3)

Next, let x�v�w� and u�v�w� be the solution of (2.8).
Then clearly, x�v�w� and u�v�w� also satisfy the fol-
lowing

E
∂x�v�w�

∂v
A1v � f �x�v�w��u�v�w�

�K2h�x�v�w��v�w��v�w�

h�x�v�w��v�w� � 0 (4.4)

Let T�1
2 x�v�w� � �x̄T

1 �v�w�� x̄T
2 �v�w��T . Then (4.2) and

(4.4) imply



∂ x̄1�v�w�

∂v
A1v � f̄1

�
x̄1�v�w��u�v�w��v�w

�
h̄�x̄1�v�w��u�v�w��v�w� � 0

(4.5)

Next we will show that there exists a sufficiently
smooth function z�v�w� such that

u�v�w� � K1z�v�w�
∂z�v�w�

∂v
A1v � g1z�v�w�

(4.6)

To this end, let x̄�k�
1

�v�w�, and z�k� �v�w� be as defined

in (3.13). Then by (4.3) and (3.17), x̄�k�
1
�v�w�, and

z�k� �v�w� also satisfy the following

∂ x̄�k�
1
�v�w�

∂v
A1v � f̄1

�
x̄�k�

1
�v�w��K1z�k��v�w��v�w

�
h̄�x̄�k�

1
�v�w��K1z�k��v�w��v�w� � O�vk�1� (4.7)

Since x̄�k�
1
�v�w��z�k� �v�w� take the form given by

(3.14), and φlw and θlw satisfy (3.15) and (3.16), com-
paring (4.5) with (4.7) shows that there exist suffi-

ciently smooth functions x̄1k�v�w� � O
�

v�k�1�
�

and

uk�v�w� � O
�

v�k�1�
�

such that

x̄1�v�w� �
k

∑
l�1

φlwv�l�� x̄1k�v�w�

u�v�w� �
k

∑
l�1

K1θlwv�l��uk�v�w�

But since u�v�w� is assumed to be kth degree polyno-
mial in v, it must hold that u�v�w� � ∑k

l�1K1θlwv�l�.
Let z�v�w� � ∑k

l�1θlwv�l�. Clearly the first equation of
(4.6) is satisfied. Now using (3.15) and (3.16) gives
θlwAl � g1θlw� l � 1� � � � �k. Hence

k

∑
1

θlwAlv
�l� �

k

∑
1

g1θlwv�l� (4.8)

Using ∂v�l�

∂v A1v � v̇�l� � Alv
�l� in (4.8) gives

∂z�v�w�

∂v
A1v �

k

∑
l�1

θlw
∂v�l�

∂v
A1v � g1

k

∑
l�1

θlwv�l�

Thus, the second equation of (4.6) is satisfied.

Finally letting xc�v�w� � �xT �v�w��zT �v�w��T and sub-
stituting xc�v�w� and u�v�w� into (2.5) gives

hc �xc�v�w��v�w� � h�x�v�w��v�w� � 0

and, additionally using (2.8) and (4.6) gives

Ec
∂xc�v�w�

∂v
a�v� �

�
f �x�v�w��u�v�w��v�w�

g1z�v�w�

�
But (2.5) gives

fc �xc�v�w��v�w� �

�
f �x�v�w��u�v�w��v�w�

g1z�v�w�

�
Thus condition (ii) of Theorem 2.2 is also satisfied.
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