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Abstract: A nonlinear light- and nitrate-limited phytoplankton growth model in a
photobioreactor is presented. Its qualitative steady input-output behaviour is studied
and compared to biological observations of the evolution of ratios between nitrogen,
carbon, chlorophyll with respect to the two considered inputs (light and dilution rate).
A qualitative validation of the model is provided. The steady input-output behaviour
is also used to get linear regressions that provide an estimate of the parameter values.
The simulations of the model identified and validated with this approach are consistent
with the data.
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1. INTRODUCTION

The estimation of the amount of CO2 fixed by
oceanic phytoplankton during primary production
is a key point to quantify the future evolution
of atmospheric carbon. Modelling of phytoplank-
ton growth is therefore an important challenge to
improve the predictions on planet global warm-
ing. Phytoplankton growth is highly dependant on
many environmental factors. Light, nutrients and
temperature are generally considered as the main
factors affecting phytoplankton growth (Chalup
and Laws, 1990). In stratified waters, light is avail-
able in the surface layer but nitrates are generally
present at low concentrations. On the contrary, in
the deep layer, light is low and nitrate abundant.
For intermediate situations, light and nitrates
are both at suboptimal levels for phytoplankton
growth. Moreover, due to vertical mixing, cells are
continuously exposed to a variable environment,
and must adapt their metabolism to sustain an

optimal growth under opposing gradients of light
and nitrogen. This paper proposes a model that
will describe the phytoplanktonic behaviour when
both nitrogen and light are at suboptimal level.

Modelling, and therefore validation of biological
systems are known to be very delicate. Contrary
to other domains (physics, electronics, etc), bio-
logical models are not based on admitted laws
(like e.g. the Ohm’s law in electronics). To cir-
cumvent this difficulty, Bastin and Dochain (1990)
have introduced mass balance modelling in bio-
processes. It results in splitting the model in two
parts: modelling of mass transfers and modelling
of biological kinetics. We propose here a method
to test the structural validity of our model at
steady state. More precisely, we assume that the
input-output behaviour of the processes at steady
state is qualitatively known and we check whether
the model has the same properties. Thus, we must
study the response of the equilibria reached by
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the model to changes in the inputs (here light or
nitrogen limitation rate). If the model does not
fit the qualitative experimental observations, it
will be rejected. The method consists of selecting
from previous experiments or literature a set of
experimental observations describing qualitatively
the evolution of the steady states when an input is
increased or decreased. In a second step, the model
equilibria are computed and their variations and
those of nonlinear combinations of state variables
are studied with respect to the inputs.

The paper is organised as follows. In a first part,
we present the experimental photobioreactor and
the mechanism of carbon incorporation. Some ex-
perimental facts that should be reproduced by the
model are listed. Secondly, we present the main
hypotheses of the mass balance model, and we
explain how the reaction rates have been chosen.
In a third part, we study the steady states and
their response to changes of the inputs. Finally
we explain briefly the identification process and
we present simulations to show that the model
agreement with data is also quantitative.

2. SYSTEM OVERVIEW

2.1 Presentation of the photobioreactors

Photobioreactors are commonly used as culture
systems for microalgae with various applications
(health food, aquaculture, fine chemicals, envi-
ronmental applications, etc...). In these systems,
the growth rate of the microalgae is controlled by
adjusting the environmental conditions of the cul-
ture such as light, temperature, nutrient supply...
The photobioreactors used for this study consist
of 5 liters thermostated vessels fed with sea water
whose nitrate (NO3) is the limiting substrate. The
light intensity is adjusted by filters. The measure-
ments of residual substrate is performed by an
automaton related to an autoanalyser Technicon.
The cell density is acquired with an automated
laser HIAC particle counter. Chlorophyll a (Chl)
is estimated with a spectrophotometer (Sciandra
et al., 2000) and the concentration of particulate
carbon (C) and nitrogen (N) are obtained by a
CHN analyser. For more details on the experi-
mental device, see (Bernard et al., 1996). Data
were obtained from experiments of simultaneous
limitation by light and nitrate with Rhodomonas
salina (Cryptophyceae).

2.2 The nonlinear coupling between light and
nitrogen limitation

Experimental studies (Rhee and Gotham, 1981)
have highlighted the interaction between light

and nutrients on growth through a physiologi-
cal adaptation known as the compensation phe-
nomenon. The cell can compensate a decrease of
light intensity by optimising its ability to harvest
photons through an increase of its pigment con-
tent (Falkowski and Owens, 1980) and by reg-
ulating the Ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco). Rubisco and chloro-
phyll represent large nitrogen reserves in the cell
and vary with the nitrogen status and light limi-
tation (Sciandra et al., 1997).

2.3 The experimental steady input-output behaviour

The following biological features have been ob-
served experimentally at steady state:

• Carbon concentration increases with light
and decreases with dilution rate (see Fig. 1a
and also see Geider et al.,1998).

• Chlorophyll concentration is a decreasing
function of the light due to photoadaptation
(Laws and Bannister, 1980). It increases with
the dilution rate (see Fig. 1b).

• Chl:C increases with the dilution rate and
decreases with light intensity (Chalup and
Laws, 1990; Geider et al., 1998)

• N:C increases with the dilution rate (Chalup
and Laws, 1990) and decreases with light.

3. MODEL SET-UP

3.1 Introduction

Many phytoplankton growth models have been
developed for one limiting factor such as nutri-
ent, light or temperature. Models integrating more
than one limitation are often difficult to validate
for two reasons. First, they often use numerous
parameters that are difficult to identify from the
available data (e.g. (Geider et al., 1998)). Sec-
ondly, as they tend to describe detailed cellular
processes, state variables often represent quanti-
ties that can not be measured experimentally (e.g.
(Shuter, 1979)).

Our model integrates both limitations by light and
nitrogen. It has been designed to have a simple for-
mulation with few parameters. Three of the four
state variables represent measurable quantities in
a photobioreactor or in the open sea (chlorophyll,
carbon, nitrate, particulate nitrogen). These fea-
tures permit easier identification and validation.

Phytoplankton growth is assumed to be triggered
by two distinct metabolic pathways: uptake and
assimilation of nitrogen on one hand and car-
bon fixation through photosynthesis on the other
hand.
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Fig. 1. Steady-state concentrations for particulate carbon
(a) and chlorophyll a (b) at different dilution rates for
experimental data (points) and calculated equilibria
for model state variables (line) (see section 4.1 for
details). Steady-state solutions evolve accordingly to
observations.

The associated reaction scheme (see (Bastin and
Dochain, 1990) for more details on mass balance
modelling) for the nitrogen pathway is therefore:

• First, nitrogen source (nitrate, denoted S) is
uptaken by the cell into a cellular nitrogen
pool (N) :

S
r1(.)−→ N

The rate of this reaction is denoted r1(.).
• In a second step, the nitrogen pool is used

to produce the chlorophyllian proteins (L)
associated with the photosynthesis process:

N
r2(.)−→ L

The rate of this reaction is denoted r2(.).
• Finally, a natural degradation of the Chloro-

phyll is also taken into account. The rate of
the reaction is r3(.):

L
r3(.)−→ N

We assume that the carbon pathway results
mainly from two reactions:

• Inorganic carbon (CO2) is incorporated into
the cell through photosynthesis to form par-
ticulate carbon (C).

CO2
r4(.)−→ C + O2

The photosynthesis rate is r4(.)
• A proportion of the carbon is lost by respi-

ration:

C + O2
r5(.)−→ CO2

The model has therefore the general form exposed
in Bastin and Dochain (1990):

dξ

dt
= Kr(ξ)−Dξ + Dξin −Q(ξ) (1)

with the following definitions:

ξ =




S
N
L
C

CO2

O2




, ξin =




Sin

0
0
0

CO2in

O2in




, r(ξ) =




r1(ξ)
r2(ξ)
r3(ξ)
r4(ξ)
r5(ξ)


 ,

K =




−1 0 0 0 0
1 −1 1 0 0
0 1 −1 0 0
0 0 0 1 −1
0 0 0 −1 1
0 0 0 1 −1




, Q(ξ) =




0
0
0
0

QCO2
QO2




(2)

Here D is the dilution rate of the bioreactor, Sin,
CO2in and O2in are respectively the concentration
of S, CO2 and O2 in the renewal medium. The
gaseous flow rate of carbon dioxide and oxygen
outside the bioreactor are denoted QCO2 (it is
generally negative because of the photosynthesis)
and QO2 .

3.2 Kinetic description

Now we will use the available biological knowledge
to estimate the reaction rates with respect to the
state variables and to the light intensity I:

r1: The nitrate uptake rate is classically repre-
sented by a Monod kinetics (Dugdale, 1967):
r1(ξ) = ρm

S
S(t)+KS

C. Parameters ρm and Ks

represent respectively the maximum uptake
rate and the half-saturation constant for the
absorption of nitrate.

r2: The chlorophyll synthesis is assumed to be
dependent on light intensity and on the ratio
L
C . It is proportional to the nitrogen pool
N : r2(ξ, I) = γ(I)N L

C . We assume that the
pigment synthesis is of Monod type at low
irradiance and that it is inhibited at high
light levels. We take the following expression:
γ(I) = αKLI

KI+I
KC

KC+I where α and KI are
respectively the maximum rate for carbon
and the half-saturation coefficient for the
fixation rate. KL is the maximum synthesis
rate and KC is a threshold coefficient.



r3: The chlorophyll degradation rate is assumed
to be constant (with a coefficient β): r3(ξ) =
βL.

r4: The photosynthesis rate is highly dependant
on light level and chlorophyll pigments which
act as catalyzers for this reaction. Inorganic
carbon is considered as non-limiting for phy-
toplankton growth in marine environment,
and therefore it does not intervene:

r4(ξ, I) = a(I)L with a(I) = α·I
KI+I . The

same coefficients α and KI as these for γ(I)
have been selected in order to reduce the
number of parameters (actually the identi-
fied values of these parameters for γ(I) and
a(I) were quite close). In the sequel, we will
consider the quantity k(I) = γ(I)/a(I).

r5: The respiration rate is simply proportional
to the carbon biomass (with a factor λ):
r5(ξ) = λC.

From the preceding hypotheses, it follows that
inorganic carbon and oxygen do not affect the
other state variables. We will therefore consider
the following submodel:

(ΣD)





Ṡ(t) = D[Sin − S(t)]− ρm
S(t)

S(t) + KS
C(t)

Ṅ(t) = −DN(t) + ρm
S(t)

S(t) + KS
C(t)

−γ(I)N(t)
L(t)
C(t)

+ βL(t)

L̇(t) = −DL(t) + γ(I)N(t)
L(t)
C(t)

− βL(t)

Ċ(t) = −DC(t) + a(I)L(t)− λC(t)

(3)

4. QUALITATIVE PROPERTIES

The analysis of the qualitative properties allows a
structural validation of the model, independently
from the parameter values. The aim of this anal-
ysis is to determine whether the steady input-
output properties of the model are consistent with
the observations.

4.1 Determination of the equilibria

In this step, we compare the steady-state model
outputs and some of their ratios with their ex-
perimental equivalent for different dilution rates
and light intensities. Relationships are expressed
as functions of I and D.

Model solutions at steady-state are marked with
?. The L? : C? ratio is deduced from Ċ(t) = 0 :

L?

C?
=

D + λ

a(I)
(4)

The N? : C? ratio is calculated from the equation
L̇(t) = 0:

N?

C?
=

D + β

γ(I)
(5)

The steady-state solutions of S? and N? are
obtained by combining the equations Ṅ(t) = 0
and Ṡ(t) = 0:

S? =
KSD[k(I)(D + λ) + (D + β)]

ρmγ(I)−D[k(I)(D + λ) + (D + β)]
(6)

N? =
(D + β)(Sin − S?)

k(I)(D + λ) + (D + β)
(7)

C? is obtained from equations (6) and (8):

C? =
γ(I)(Sin − S?)

k(I)(D + λ) + (D + β)
(8)

L? is finally deduced from equations (5) and (9):

L? =
k(I)(D + λ)(Sin − S?)
k(I)(D + λ) + (D + β)

(9)

4.2 Qualitative steady input-output behaviour

It is worth noting that measurements of S? are
always much smaller than Sin. The value of S?

is linearly related to KS (see equation (6)) and
KS does not intervene for the computation of the
other equilibrium states. Therefore the predicted
value of S? can be tuned by KS : a small value
of KS will ensure that S? computed from the
model is very low. We will therefore approximate
Sin − S? ' Sin. It follows that:

N? ' (D + β)Sin

k(I)(D + λ) + (D + β)
(10)

If the pigment degradation rate is higher than the
respiration rate (β > λ), then N? is a decreasing
function with respect to light and dilution rate.
We will make this assumption in the sequel.

We have then:

C? ' γ(I)Sin

k(I)(D + λ) + (D + β)
(11)

and:

L? ' k(I)(D + λ)Sin

k(I)(D + λ) + (D + β)
(12)

By differentiating the expression (5) with respect
to light, it is straightforward to see that N?

C?

is minimal when Iopt =
√

KI ·KC . For lower
intensities, this ratio is decreasing when light
increases. The ratio N?

C? decreases with light and
increases with dilution rate.

The qualitative behaviour of the state variables
and of the considered ratios, when I or D increase,



is summarized in Table 1. Figure 1 represents the
variations of particulate carbon and chlorophyll
concentrations for different dilution rates. In con-
clusion the proposed model has the same observed
steady input-output behaviour as observations in
the photobioreactor.

Quantity I D

C? + -

L? - +

N? + -
N?

C? - +
L?

C? - & + +

Table 1. Qualitative input-output behaviour
of the model: evolution of the steady-state
values with respect to I and D (+: increasing, -
:decreasing, - & +: decreasing then increasing).

5. QUANTITATIVE PROPERTIES

We propose here to use the steady input-output
behaviour in order to identify the model param-
eters. We claim that this method provides better
results than the classical global approach that
consists in minimizing a criterion (e.g. least square
between simulations and data) with respect to
the parameter vector. Indeed, for biological sys-
tems whose models are rough approximations and
whose measurements are noisy, the global mini-
mization method leads most of the time to local
minima. The proposed approach allows to decou-
ple the parameter estimations (ı.e. they are iden-
tified by small sets) and provides at the same
time a way to validate the model. The approach
is based on a quantitative analysis of the steady
input-output behaviour. For sake of conciseness,
we will explain the idea of the method with an
example.

5.1 Use of the steady input output behaviour for
identification

We will use the steady input-output behaviour
obtained for the ratio L?

C? given by equation (5)
and rewritten here as a function of the inputs I
and D:

L?

C?
=

KI ·D
α · I +

D

α
+

λ ·KI

α · I +
λ

α
(13)

This expression can be seen as a linear relation-
ship between the steady ratio L?

C? , and the com-
binations of inputs given by D

I , D and 1
I . There-

fore, there is a regression between these known
quantities and the unknown ratios KI

α , 1
α

λKI

α

and λKI

α . Theorically, a least square minimization
of this regression for more than 4 independent
data sets (i.e. measurements of the ratio L?

C? )

obtained for various inputs will provide an esti-
mate of KI

α , 1
α

λKI

α and λKI

α . From these ratios
it is straightforward to obtain the values of α, λ
and KI . Nevertheless this method involves many
unknowns in the regression, and therefore we pro-
pose to improve it as follows. We will consider
equation (13) obtained for 2 different values of
I, denoted I1 and I2. The difference between the
values of L?

C? obtained for the same dilution
rate D is given by:

L?

C? |I1 − L?

C? |I2

1
I1
− 1

I2

= D · KI

α
+

KI · λ
α

(14)

It is worth noting that the terms D
α and λ

α dis-
appeared in equation (14). The new relation is
expressed as a linear function of D. A simple
linear regression using experimental data will then
provide an estimate of λ. Of course, α and KI can
not be directly evaluated from this regression, but
from other relationships. In particular, the same
approach can be used with the difference between
ratios L?

C? obtained for the same dilution rate and
for various light intensities. The significance of the
regression with respect to the data may be statis-
tically checked to assess the quantitative validity
of the steady input-output behaviour. Except ρm

and KS , all parameters have been identified with
this method. ρm and KS are identified in batch
conditions (dilution rate is zero) at the beginning
of each experiments since the kinetic of nitrate
absorption is adequately estimated only when the
nitrate concentration is detectable (after it falls
under the detection threshold).

Only after this step of steady-state identification,
parameters tuning is improved by a global least
square minimization, starting with initial parame-
ter values provided by the previous approach. The
resulting values of the parameters are represented
in Table 2. They do not differ greatly from the
values obtained by the exploitation of the steady
input-output behaviour.

parameters values units

ρm 0.5 µ molN.molC−1.d−1

KS 0.43 µ M N

KL 6.59 n.d.

KC 33.0 µ mol quanta.m−2.s−1

α 24.1 d−1

KI 208.5 µ mol quanta.m−2.s−1

λ 0.054 d−1

β 0.345 d−1

Table 2. Estimates of the model parameters.

5.2 Dynamic simulations

Dynamic simulations are compared to experimen-
tal time series. The model is integrated with a
second order Runge-Kutta method with variable



step time. Three criteria are used to evaluate the
model:

1) the difference between steady observations and
model predictions.

2) the ability to describe transient phases obtained
between two steady-states when the dilution rate
has been modified.

3) the ability to describe batch mode results.

Chlorophyll and carbon predictions are close to
experiments for steady-state conditions (see Fig.
2) but in some extreme cases of very low or high
dilution or light intensities, the output of chloro-
phyll and carbon may be under- or overestimated.
Transient phases are evolving accordingly to the
experimental data. Carbon predictions are partic-
ularly close to measurements. For Chlorophyll, the
model reproduces less precisely measurements.
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Fig. 2. Comparison of experimental data and model
output for particular carbon (a) and chlorophyll (b).
The light intensity of the experiment is 32 µmol
quanta.m−2.s−1. The dilution rate is successively set
to 0, 0.3 and 0.1 d−1.

6. CONCLUSION

Although this model is made of simple assump-
tions and has few parameters, it reproduces cor-
rectly the qualitative and quantitative input-
output behaviour observed in the experiments.
More generally, we have demonstrated in this
approach the utility of the steady input-output

behaviour in order to validate and calibrate a
biological model.
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