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Abstract: The paper is about a generalization of a classical eigenvalue-decomposition 
method originally developed for errors–in-variables linear system identification to handle 
an important class of nonlinear problems.  A number of examples are presented to call the 
attention to the most critical part of the procedure turning the identification problem to a 
generalized eigenvalue-eigenvector calculation problem with symmetrical matrices. The 
elaborated method generates consistent parameter estimation. Simulation results 
demonstrate the effectiveness of the proposed algorithm.   
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1. INTRODUCTION 
 
The problem of identifying a model from noisy input 
and output measurements is known as the errors-in-
variables (EIV) problem. Considering linear systems 
a number of methods were elaborated in the last few 
years to handle the EIV problem. E.g. Castaldi et al. 
(1996), Chou et al. (1997) and Heij et al. (1999) 
presented results for the EIV model based 
identification. The nonlinear problem has been 
exposed in Amemiya et al. (1988) and Vandersteen 
(1997). 
 
The central problem discussed in this paper is an 
extension of one of the EIV methods available for 
linear models to handle nonlinear problems. The 
Koopmans method (Koopmans, 1937) is a well-
known classical method, which has been serving as a 
firm theoretical basis for a number of identification 
algorithms for decades. Using the Koopmans 
algorithm Levin (Levin, 1964, Fernando et al., 1985) 
proposed methods for identification of EIV dynamic 
linear system. This algorithm can be considered the 
ancient version of the nowadays-popular subspace 

algorithms. As a major difference Levin’s algorithm 
is based on eigenvalue-eigenvector calculations, 
while the subspace algorithms are using singular 
value decomposition resulting in improved numerical 
robustness.  
 
The goal of this paper is to extend the capability of 
the eigenvalue-eigenvector calculation based 
algorithms to handle nonlinear system identification 
problems. The presented algorithm exhibits 
procedural similarities with the approach followed in 
Vandersteen (1997), however, the a priori conditions 
and – consequently – the elaborated algorithm are 
completely different. 
 
The paper is organized as follows. First an overview 
of the Koopmans - Levin method will be given for 
linear systems. Then a simple example will be used as 
a vehicle to show the key idea proposed to handle the 
nonlinear case. The steps used in the introductory 
example will be generalized and further examples will 
demonstrate the proper treatment of the recorded data 
in the critical phase of the proposed algorithm. 
Simulation results will conclude the paper. 
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2. EIGENVALUE-EIGENVECTOR METHOD – 
THE LINEAR CASE 

 
Considering discrete-time linear systems assume that 
a set of noiseless observations o

tiz , results in a model 
output by the following linear combination of 
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where t denotes the discrete time instants (t=0,1,2,…) 
and the ai parameters are to be estimated. Collecting 
the unknown parameters and the noiseless 
observations in parameter and observation vectors, 
respectively, 
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The model equation can be reformulated in an 
implicit form of 0=o

t
T xϑ , where 
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are extended parameter and noise-free observation 
vectors, respectively.  The main consequence of using 
an implicit model is that each variable plays the same 
role, no distinction is made among input and output 
signals.  
 
The application of the well known Least Squares (LS) 
estimation technique leads to unbiased estimation for 
the ia  parameters if the set of the tx measured 
records available for the estimation is such that 
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where tε  is white noise. Koopmans (Koopmans, 
1937) generalized the LS estimation scheme by 
developing a maximum likelihood (ML) estimation 
assuming extended observation vectors. In his model 
all components of the observation vector may be 
corrupted by additive noise according to 

t
o
tt nxx += , where tn  is Gaussian white noise with 

covariance matrix Cµ .  
 
Assuming N samples find an estimation of the 
parameter vectorϑ . With no a'priori information 
available there is no better estimation than the 
maximum likelihood (ML) estimation. To find this 
estimation we need to set up the likelihood function 
of the observations: 
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Now the ML estimation can be obtained by 
maximizing the likelihood function in terms of ϑ  and 

o
tx .  

 
With the constraint of 0=o

t
T xϑ  the above 

maximization is equivalent to minimize the loss 
function 
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by ϑ  with no constraints, which in turn needs to 
solve 
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According to the above equation the optimal value of 
ϑ  can be determined as a solution of the generalized 
eigenvalue calculation problem defined by 

( ) 0CW =− ϑµ . (13) 
More exactly, the optimal value of the parameter 
estimation will be equal to the eigenvector related to 
the smallest eigenvalue found, namely 

    1min µ
ϑ

=J  (14) 

holds.  
 
The original Koopmans method relates to static linear 
models. Levin, however, applied the above algorithm 
for linear dynamic EIV models. In this case the 
observation vector is composed from the delayed 
recorded input and output samples of the process. 
Otherwise the parameter vector is still calculated via 
solving a generalized eigenvalue-eigenvector 
calculation problem. 
 
The advantage of the Koopmans-Levin method is 
clearly seen from the above equations, namely the 
consistent estimation is based on the relatively easy 
calculation of eigenvectors and eigenvalues of 
symmetrical matrices. Namely for symmetrical 
matrices of ΦΦW T=  and ΓΓC T=  the generalized 
eigenvalue calculation for the ),( CW pair can be 
traced back to a generalized singular value 
decomposition for ),( ΓΦ  representing a far more 
robust numerical algorithm. The presented methods 
can be qualified as direct strategies in the sense that 
no iteration is required to obtain the parameter 
estimation. 
 
 

3. EIGENVALUE-EIGENVECTOR METHOD – 
THE NONLINEAR CASE 

 
In this section the above-presented algorithm will be 
generalized for nonlinear EIV identification. First a 
simple example will be shown to demonstrate the  
way the nonlinear extension is performed. Then a 
nonlinear eigenvalue-eigenvector algorithm will be 



 

     

(25)

presented. Finally some technical hints will be given 
for the calculation. 
 
3.1 An introductory example 
 
Just to get started let us consider how to fit a second 
order parabolic function to a set of Nuu ,...1  and 

Nyy ,...1  input/output observation records. Working 
with the standard assumptions the input/output 
records are assumed to be corrupted by independent, 
normal distribution white noise with zero mean and 
variance of 2

uµσ  and 2
yµσ , respectively. As far as 

the noiseless observations o
N

o uu ,...1  and o
N

o yy ,...1  are 
concerned the constraint by  
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t
o
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holds expressing the second order parabolic relation, 
though the θ  parameter is not known. The maximum 
likelihood estimation for the unknown θ  parameter 
can be obtained by minimizing the loss function  
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The straightforward minimization would lead to a set 
of 3N+1 equations allowing to find the 3N+1 
unknown variables (i.e. ou1 , ou2 ,…, o

Nu , oy1 , oy2 ,…, 
o
Ny , o

1λ , o
2λ ,…, o

Nλ ,θ ), including the θ  parameter 
itself. It is obvious, however, that with the increasing 
number of observations this simple approach will not 
work in practice. Consequently, to derive a feasible 
solution a different approach should be applied. 
 
The approach to be followed hereafter aims to turn 
the parameter estimation problem to a generalized 
eigenvalue-eigenvector calculation problem. It is 
noted, however, that the elaborated method will not 
give a maximum likelihood estimation. All we can 
say is that the estimation will be consistent and the 
underlying method will be adequate for practical 
applications.  
 
Coming back to the problem to fit a second order 
parabolic function to the input/output records 
consider the following matrix constructed by the 
noisy (available) observations 
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and find the expected value of D . The components of 
{ }DE  can be calculated as follows: 
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(20) 
All the right hand side expressions above contain 
sums made out of the noiseless signals not available 
for calculations. To isolate the terms with unknown 
variables we are going to use the following 
evaluations valid for the expected values: 
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Arranging the above components into a vector-matrix 
form: 
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Now introducing 
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Observe that oD is singular as a result of the linear in 
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The operation instructed by the expected value 
relates to calculated mean values, thus the 
approximation by 
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allows the parameter estimation reformulated as  
( )( ) 0HD =− ϑµ  .    (34) 

In other words the parameter estimation problem is 
equivalent to a generalized eigenvalue-eigenvector 
problem in the sense that the smallest generalized 
eigenvalue µ  is looked for satisfying  

( )( ) 0det =− µHD ,    (35) 

while the estimation ϑ̂  will be obtained as the 
eigenvector belonging to this eigenvalue. 
 
In the sequel, the introductory example just discussed 
will be directly generalized for more complex linear 
in parameters nonlinear models. 
 
3.2 Generalization 
 
In contrast to the linear equation given by 0=o

t
T xϑ  

discussed in Section 2 nonlinear process models will 
now be considered. Denoting the set of the noiseless 
observations by o

tx  and the noisy observations by 

tx , and further on assuming white noise conditions 
with zero mean and Cµ  covariance we have 
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For the noiseless observations a nonlinear constraint 
is assumed to exist, which relation is assumed to be 
linear in parameters: 
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Further on we assume that the elements of )( o
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are polynomials of the observations. Based on the 
noisy observations tx for t=1,2,…,N  the goal is to 
find an estimation for ϑ .  
 
Calculating )( txg  from the available observations 
consider the following matrix 
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by repeating the very same steps applied in the 
introductory example. It can be shown that 
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However, it is difficult to give a general analytical 
form for )(µH . Anyway, we have 
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expected value of a calculated mean by the calculated 
mean itself allows to drop the expected value 
operation and results in 
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Again, the parameter estimation problem has been 
turned to a generalized eigenvalue-eigenvector 
problem.  
 
Due to the polynomial construction of g( ) the matrix 
H is a polynomial like function of  µ: 
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where  m  is the maximum  order in  the elements of 
g( ), and the matrices Hi are 
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Note that for the original Koopmans method  
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3.3 Practical hints 

 
As it has been pointed out earlier it is quite difficult to 
derive a general analytical form for )..,,( 1 NxxCH µ . 
However, to demonstrate the technique how to find 

)..,,( 1 NxxCH µ  consider a few examples. 

In the examples we apply the following properties 
valid for normal distribution: 
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is defined as the central moment.  
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Find the following expected value:  
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Straightforward calculations give 
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where the summations can further be expressed by µ 
and σ resulting in the following matrix form: 



 

     

(53) 
According to the special triangular structure of the 
coefficient matrix the above equation can easily be 
solved and we obtain: 
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Consider a matrix D  given by 
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then to derive H  the following set of equations 
should be solved: 
 

 
where uyc   stands for the cross-correlation between 

tu  and ty . 
 
Example 3 
Assume we have random variables tx  with normal 
distribution. Considering transcendent functions 

)( tf x  of tx  it is noted that { })( tfE x  may or may 
not exist. As an example we state 
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expanding )ln( ty  into Taylor 
series and substituting the central 
moments. 
 
Summary of the proposed 
algorithm 
 
Based on the discussions so far 
and evaluating the examples 
presented in details earlier a 
procedural    algorithm    can    be 

given to generate the matrix H  provided a D  matrix 
of 
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and further on assuming noise conditions to be 
normal: 
Step 1: Find 
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expressed by the noiseless observations and the noise 
parameters (mean and variance). 
Step 2: When finding the expected value for the 
noiseless observations use the calculated mean of the 
noisy observations as approximations (see the 
examples shown previously). Set up a set of equations 
based on the relation between the calculated means of 
the noisy and noiseless observations. 
Step 3: Solve the equations set up in Step 2 for 
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Step 4: The jiH .  entries can be calculated by 
approximating the expected values of sums involved 
with the sums themselves . 
Step 5: The following equation should be solved 
numerically for minµ : 
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Step 6: Finally, using the fundamental relation of the 
algorithm  
         ( ) 0xxCHxxD =− ϑµ ˆ)..,,()..,( 1min1 NN  (64) 

ϑ̂  can be determined. The presented algorithm 
results in a consistent, but not ML estimation. The 
effectiveness of the algorithm can be further 
improved by an appropriate weighting sequence 
applied in the composition of matrix D.  
 

4. SIMULATION RESULTS 
 
In the sequel, two numerical examples will be shown 
to demonstrate the effectiveness of the elaborated 
algorithm. 
 
4.1 Identification of a parabolic curve 
Consider N=100 samples of the following system: 

          ottt auauay ++= 1
2

2    (65) 
with measurements corrupted by normal noise 
conditions of 2.0== yu σσ . In Fig. 1 the noisy 
observations, the LS estimation, the true system, as 
well as the results obtained by applying the proposed 
algorithm are given. It is seen that the true system 
and the nonlinear EIV model based identification 
derived in this paper are almost cover each other.  
 
4.2 Identification of an elliptic curve 
Consider N=1000 samples of the following system: 
     0543

2
21

2 =+++++ auayauauyaya tttttto    (66) 
with measurements corrupted by normal noise 
conditions of 1== yu σσ . In Fig. 2 it is seen that 
now we have a really high noise/signal ratio, this is 
why 1000 samples were selected for the 
identification. In spite of the noisy environment the 
result obtained by the new algorithm is capable to 
almost completely reconstruct the contour 
determined by the noiseless observations.  
 

5. CONCLUSION 
 
The goal of this paper is to extend the capability of 
the eigenvalue-eigenvector calculation based 
algorithms to handle nonlinear system identification 
problems. A new identification algorithm for 
nonlinear linear in parameter errors-in-variables 
models has been presented in the paper. The 
algorithm is based on generalized eigenvalue-
eigenvector calculations in the form of 

                ( )( ) 0=− ϑµHD  (67) 
The vector composed by the unknown system 
parameters then is associated with the smallest 
eigenvalue found. Assuming sufficient input 
excitation the parameter estimation is consistent and 
it is direct in the sense that the estimation is obtained 
in one step rather than a result of iterations. 
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Fig. 1. Identification of a parabolic curve 
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Fig. 2. Identification of an elliptic curve 
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